COVID-19 infections pose a serious global health concern so it is crucial to identify the biomarkers for the susceptibility to and resistance against this disease that could help in a rapid risk assessment and reliable decisions being made on patients’ treatment and their potential hospitalisation. Several studies investigated the factors associated with severe COVID-19 outcomes that can be either environmental, population based, or genetic. It was demonstrated that the genetics of the host plays an important role in the various immune responses and, therefore, there are different clinical presentations of COVID-19 infection. In this study, we aimed to use variant descriptive statistics from GWAS (Genome-Wide Association Study) and variant genomic annotations to identify metabolic pathways that are associated with a severe COVID-19 infection as well as pathways related to resistance to COVID-19. For this purpose, we applied a custom-designed mixed linear model implemented into custom-written software. Our analysis of more than 12.5 million SNPs did not indicate any pathway that was significant for a severe COVID-19 infection. However, the Allograft rejection pathway (hsa05330) was significant (p = 0.01087) for resistance to the infection. The majority of the 27 SNP marking genes constituting the Allograft rejection pathway were located on chromosome 6 (19 SNPs) and the remainder were mapped to chromosomes 2, 3, 10, 12, 20, and X. This pathway comprises several immune system components crucial for the self versus non-self recognition, but also the components of antiviral immunity. Our study demonstrated that not only single variants are important for resistance to COVID-19, but also the cumulative impact of several SNPs within the same pathway matters.
A downside of next-generation sequencing technology is the high technical error rate. We built a tool, which uses array-based genotype information to classify next-generation sequencing–based SNPs into the correct and the incorrect calls. The deep learning algorithms were implemented via Keras. Several algorithms were tested: (i) the basic, naïve algorithm, (ii) the naïve algorithm modified by pre-imposing different weights on incorrect and correct SNP class in calculating the loss metric and (iii)–(v) the naïve algorithm modified by random re-sampling (with replacement) of the incorrect SNPs to match 30%/60%/100% of the number of correct SNPs. The training data set was composed of data from three bulls and consisted of 2,227,995 correct (97.94%) and 46,920 incorrect SNPs, while the validation data set consisted of data from one bull with 749,506 correct (98.05%) and 14,908 incorrect SNPs. The results showed that for a rare event classification problem, like incorrect SNP detection in NGS data, the most parsimonious naïve model and a model with the weighting of SNP classes provided the best results for the classification of the validation data set. Both classified 19% of truly incorrect SNPs as incorrect and 99% of truly correct SNPs as correct and resulted in the F1 score of 0.21 — the highest among the compared algorithms. We conclude the basic models were less adapted to the specificity of a training data set and thus resulted in better classification of the independent, validation data set, than the other tested models.
Background: Severe outcomes of COVID-19 account for up to 15% of all cases. The study aims to check if any gene variants related to cardiovascular (CVD) and pulmonary diseases (PD) are correlated with a severe outcome of COVID-19 in a Polish cohort of COVID-19 patients. Methods: In this study, a subset of 747 samples from unrelated individuals collected across Poland in 2020 and 2021 was used and whole-genome sequencing was performed. Results: The GWAS analysis of SNPs and short indels located in genes related to CVD identified one variant significant in COVID-19 severe outcome in the HADHA gene, while for the PD gene panel, we found two significant variants in the DRC1 gene. In this study, both potentially protective and risk variants were identified, of which variants in the HADHA gene deserve the most attention. Conclusions: This is the first study reporting the association between the HADHA and DRC1 genetic variants and COVID-19 severe outcome based on the cohort WGS analysis. Although all the identified variants are localised in introns, they may be correlated and therefore inherited along with other risk variants, potentially causative to severe outcome of COVID-19 but not discovered yet.
Genome-wide association studies (GWAS) help identify polymorphic sites or genes linked to phenotypic variance, but a few identified genes and/or single nucleotide polymorphisms (SNPs) are unlikely to explain a large part of the phenotypic variability of complex traits. In this study, the focus was moved from single loci to functional units, expressed by the metabolic pathways as defined in the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. Consequently, the aim of this study was to estimate KEGG effects on stature in three Nordic dairy cattle breeds using SNP effects from GWAS as the dependent variable. The SNPs were annotated to genes, then the genes to KEGG pathways. The effects of KEGG pathways were estimated separately for each breed using a mixed linear model incorporating the similarity between pathways expressed by common genes. The KEGG pathway D-amino acid metabolism (map00473) was estimated to be significant for stature in two of the analysed breeds and revealed a borderline significance in the third breed. Thus, we demonstrate that the approach to statistical modelling of higher order functional effects on complex traits is useful, and provides evidence of the importance of D-amino acids for growth in cattle.
Undoubtedly, genetic factors play an important role in susceptibility and resistance to COVID-19. In this study, we conducted the GWAS analysis. Out of 15,489,173 SNPs, we identified 18,191 significant SNPs for severe and 11,799 SNPs for resistant phenotype, showing that a great number of loci were significant in different COVID-19 representations. The majority of variants were synonymous (60.56% for severe, 58.46% for resistant phenotype) or located in introns (55.77% for severe, 59.83% for resistant phenotype). We identified the most significant SNPs for a severe outcome (in AJAP1 intron) and for COVID resistance (in FIG4 intron). We found no missense variants with a potential causal function on resistance to COVID-19; however, two missense variants were determined as significant a severe phenotype (in PM20D1 and LRP4 exons). None of the aforementioned SNPs and missense variants found in this study have been previously associated with COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.