Machining of hard-to-cut materials with conventional processes is still considered as a challenge, as the special properties of these materials often lead to rapid tool wear and reduced surface integrity. For that reason, it is preferable to combine conventional machining processes with other technologies in order to overcome the problems of machining these materials. In the present work, laser-assisted turning experiments on a Ti-6Al-4V workpiece were conducted using AlTiN coated cutting tools in order to investigate the effect of laser heating on cutting forces, cutting temperature, tool wear and microstructure alterations. Two series of experiments were performed under varying cutting speed, laser spot diameter and workpiece diameter values; the first series involved only laser heating of the workpiece and the second both laser heating and cutting. The findings revealed the effect of process parameters on cutting forces and temperature determining the importance of workpiece diameter size, indicated the formation of martensite phase at the top of the heat-affected zone of the workpiece and also showed that high temperatures can lead to intensive tool wear, instead of having a beneficial effect for the cutting tool. Finally, finite element (FE) simulations were carried out in order to study the time evolution of the temperature field and calculate the heating and cooling rates during the process. From the FE results, relatively high heating and cooling rates were observed for smaller workpiece diameters and lower cutting speed, whereas the high magnitude of these rates justified the creation of the martensite phase through a diffusionless transformation.
The aim of this work was to establish the influence of the thickness of the anodic coatings on their mechanical properties and to understand the relation between their hardness and the abrasion resistance. The coatings were produced in the hard anodizing process onto the 6061-T6 aluminum alloy. Their thickness was in the range between 19 and 43 lm. The abrasion resistance was determined by using Taber abrasion test. The weight losses of the coatings obtained were in the range between 15 and 11 mg and decreased with their increasing thickness. It has been shown that the hardness measured on the cross sections of the coatings did not correspond to their abrasion resistance. Thus, the new approach has been proposed. The hardness of the coatings was estimated on the basis of the results of the scratch test performed at the constant load. The results obtained correspond to the abrasion resistance of the coatings.
Servicing aircraft engines sometimes requires manufacturing only a single piece of a given part. Manufacturing a turbine disc using traditional methods is uneconomical. It is necessary to use a different machining method recommended for small lot production. One of the proposed methods is WEDM (wire electrical discharge machining). The article presents the results of the research on finishing WEDM of Inconel 718 turbine disc fir tree slots. The influence of infeed, mean gap voltage, peak current, pulse off-time, and discharge energy on the shape accuracy, surface roughness, microcracks, and the white layer thickness were determined. Mathematical models were developed based on the DoE (Design of Experiment) analysis. The statistical significance of the models was verified with the ANOVA (Analysis of Variance) test. The machining parameters control methods that allow achieving the required shape accuracy, surface roughness, and surface layer condition were presented. The obtained surface roughness was Ra = 0.84 μm, the shape accuracy of the slot in the normal-to-feed direction was Δd = 0.009 μm, the profile shape accuracy was Δr = 0.033 μm, and the thickness of recast (white) layer was approximately 5 μm.
The paper depicts an application of Response Surface Methodology (RSM) for predicting selected parameters in turning of Ti-6Al-4V titanium alloy using polycrystalline diamond tool. Response surface plots that are generated by the model helps in determining the optimum combination of input factors (cutting speed vc and feed rate f) for best possible surface roughness (Sa), cutting force (Fc)and temperature (T) for dry and cooling turning. The methodology of multi-criteria optimization was used to establish the interaction between input parameters and given responses
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.