The detection limit of conducting polymer (CP) poly(pyrrole)-based potentiometric chloride-sensitive electrodes was lowered over 3 orders of magnitude, applying anodic current of density in the range microamperes per centimeter squared. This effect was attributed to compensation of doping chloride ion leakage from the membrane into adjacent solution layer, caused by self-discharge of CP. This method was successfully applied to lower the detection limit of all-solid-state chloride-selective potentiometric sensors containing plastic, poly(vinyl chloride) chloride ion-selective membrane, and conducting poly(pyrrole) film applied as ion-to-electron transducer. The control of the leakage of chloride ions from the CP transducer phase to the plastic membrane resulted in linear response of ion-selective electrode shifted down to lower activities. A 2 orders of magnitude lowered detection limit, equal to 4 × 10-7 M, was achieved for current densities corresponding to extended linear range of CP film electrode, i.e., in the range of microamperes per centimeter squared. Experiments with all-solid-state potentiometric sensors were carried out using open-sandwich arrangement (two poly(pyrrole) electrodes coated by the same ion-exchanging membrane): one part of the sensor was working under open circuit conditions, while the second electrode was polarized using anodic current. Due to arrangement used, the lowered detection limit observed for nonpolarized electrode is attributed to modification of ion fluxes in the membrane; it is interfered by neither ohmic drop nor anion depletion layer formation due to anodic current flow.
A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.
One of the most frequently used conducting polymers, polypyrrole, can take part in chemical processes with typical components of ambient media: oxygen, acids, bases, redox reactants, water, and organic vapors; it can also incorporate nonreactive ions and surfactants from solutions. The influence of such processes on changes of the polymer structure, composition and on possible degradation is analyzed. The benefits and disadvantages of such processes for analytical characteristic of polypyrrole based electrochemical sensors are considered. This discussion is focused on potentiometric ion sensors, where polypyrrole is either a receptor membrane or an ion-to-electron transducer placed between a solid state electrode support and a typical ion-selective membrane.
A novel type of ion-selective nano-optode is proposed, in which a conjugated polymer is used as optical transducer and nanoprobe material. Thus, contrary to most of the proposed optodes, the response does not require presence of pH-sensitive dye in the sensor. The conjugated polymer nanosensor material is in partially oxidized form-it is bearing positive charges and its emission is quenched. The receptor is an optically silent uncharged ionophore selective for the analyte cation. When a binding event occurs, positive charges are formed in the nanosphere, leading to a decrease in the oxidation state of the polymer, in the absence of redox potential change, resulting in increased emission. This general approach herein proposed results in a simple sensor, benefitting from a novel optical transduction mechanism and high lipophilicity of the polymer matrix that results in linear responses over a broad concentration range of analyte. For the model system studied, the linear dependence of emission intensity on the logarithm of analyte (K(+)) concentration was obtained for a broad range from 10(-5) M to 0.1 M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.