Microbial cells, and ultimately the Earth's biosphere, function within a narrow range of physicochemical conditions. For the majority of ecosystems, productivity is cold-limited, and it is microbes that represent the failure point. This study was carried out to determine if naturally occurring solutes can extend the temperature windows for activity of microorganisms. We found that substances known to disorder cellular macromolecules (chaotropes) did expand microbial growth windows, fungi preferentially accumulated chaotropic metabolites at low temperature, and chemical activities of solutes determined microbial survival at extremes of temperature as well as pressure. This information can enhance the precision of models used to predict if extraterrestrial and other hostile environments are able to support life; furthermore, chaotropes may be used to extend the growth windows for key microbes, such as saprotrophs, in cold ecosystems and manmade biomes.
Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin). Surface pressure-area (π-A) and surface potential-area (Δψ-A) isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial -lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial OPEN ACCESSMolecules 2014, 19 7498 phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.
Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator (CFTR) is mediated by a tyrosine-based internalization signal in the CFTR carboxyl-terminal tail 1424 YDSI 1427 . In the present studies, two naturally occurring cystic fibrosis mutations in the amino terminus of CFTR, R31C, and R31L were examined. To determine the defect that these mutations cause, the Arg-31 mutants were expressed in COS-7 cells and their biogenesis and trafficking to the cell surface tested in metabolic pulse-chase and surface biotinylation assays, respectively. The results indicated that both Arg-31 mutants were processed to band C at ϳ50% the efficiency of the wild-type protein. However, once processed and delivered to the cell surface, their half-lives were the same as wildtype protein. Interestingly, indirect immunofluorescence and cell surface biotinylation indicated that the surface pool was much smaller than could be accounted for based on the biogenesis defect alone. Therefore, the Arg-31 mutants were tested in internalization assays and found to be internalized at 2؋ the rate of the wild-type protein. Patch clamp and 6-methoxy-N-(3-sulfopropyl)quinolinium analysis confirmed reduced amounts of functional Arg-31 channels at the cell surface. Together, the results suggest that both R31C and R31L mutations compromise biogenesis and enhance internalization of CFTR. These two additive effects contribute to the loss of surface expression and the associated defect in chloride conductance that is consistent with a disease phenotype.
The antimicrobial modes of action of six naturally occurring compounds, cinnamon oil, cinnamaldehyde, oregano oil, carvacrol, 2,5-dihydroxybenzaldehyde, and 2-hydroxy-5-methoxybenzaldehyde, previously found to inhibit the growth of Mycobacterium avium subsp. paratuberculosis (Map) reported to infect food animals and humans and to be present in milk, cheese, and meat, were investigated. The incubation of Map cultures in the presence of all six compounds caused phosphate ions to leak into the extracellular environment in a time- and concentration-dependent manner. Cinnamon oil and cinnamaldehyde decreased the intracellular adenosine triphosphate (ATP) concentration of Map cells, whereas oregano oil and carvacrol caused an initial decrease of intracellular ATP concentration that was restored gradually after incubation at 37 °C for 2 h. Neither 2,5-dihydroxybenzaldehyde nor 2-hydroxy-5-methoxybenzaldehyde had a significant effect on intracellular ATP concentration. None of the compounds tested were found to cause leakage of ATP to the extracellular environment. Monolayer studies involving a Langmuir trough apparatus revealed that all anti-Map compounds, especially the essential oil compounds, altered the molecular packing characteristics of phospholipid molecules of model membranes, causing fluidization. The results of the physicochemical model microbial membrane studies suggest that the destruction of the pathogenic bacteria might be associated with the disruption of the bacterial cell membrane.
The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid turnover at the plasma membrane in various cell types. The ubiquitously expressed N-WASP promotes actin polymerization and regulates endocytic trafficking of other proteins in response to signaling molecules such as Rho-GTPases. In the present study we investigated the effects of wiskostatin, an N-WASP inhibitor, on the surface expression and activity of CFTR. We demonstrate, using surface biotinylation methods, that the steady-state surface CFTR pool in stably transfected BHK cells was dramatically decreased following wiskostatin treatment with a corresponding increase in the amount of intracellular CFTR. Similar effects were observed for latrunculin B, a specific actin-disrupting reagent. Both reagents strongly inhibited macroscopic CFTR-mediated Cl(-) currents in two cell types including HT29-Cl19A colonic epithelial cells. As previously reported, CFTR internalization from the cell surface was strongly inhibited by a cyclic-AMP cocktail. This effect of cyclic-AMP was only partially blunted in the presence of wiskostatin, which raises the possibility that these two factors modulate different steps in CFTR traffic. In kinetic studies wiskostatin appeared to accelerate the initial rate of CFTR endocytosis as well as inhibit its recycling back to the cell surface over longer time periods. Our studies implicate a role for N-WASP-mediated actin polymerization in regulating CFTR surface expression and channel activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.