Integration of decoupling capacitors in SiC MOSFET modules is an advanced solution to mitigate the effect of parasitic inductance induced by module assembly interconnects. In this paper, the switching transient behavior is reported for a 1.2kV SiC MOSFET module with embedded DC-link capacitors. It shows faster switching transition and less overshoot voltage compared to a module using an identical package but without capacitors. Active power cycling and passive temperature cycling are carried out for package reliability characterization and comparisons are made with commercial Si and SiC power modules. Scanning acoustic microscopy images and thermal structure functions are presented to quantify the effects of package degradation. The results demonstrate that the SiC modules with embedded capacitors have similar reliability performance to commercial modules and that the reliability is not adversely affected by the presence of the decoupling capacitors.
Recently, the synchronous reluctance machine limits have been pushed toward meeting the requirements of traction applications. A skilled electromagnetic architecture of a synchronous reluctance machine with the help of permanent magnets can push the limits of power density and speed range to that of traction applications, however, the mechanical integrity of the rotor can still be in question. A traction application means large rotor diameter and high rotational speed, two criteria that makes a challenging design, in particular, mechanically. In this paper, the multi-physics design steps of a permanent magnets assisted synchronous reluctance motor for automotive application, have been presented. Firstly, the electromagnetic design following the size and thermal aspects and constrains has been conducted. Secondly, methods to reduce the mechanical stress has been explored and a bridged mechanical design has been adapted. Finally, thermal analysis of the machine has been conducted to ensure the thermal limits have been satisfied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.