Sixteen gamma-linked dipeptide and four L-Glu-gamma-amide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) have been synthesized and evaluated as inhibitors of thymidylate synthase (TS). Z-blocked L-Glu-gamma-L-linked dipeptides and L-Glu-gamma-amides were prepared by condensing alpha-tert-butyl-N-(benzyloxycarbonyl)-L-glutamic acid with the appropriate tert-butyl-protected L-amino acid or amine. The Z group was removed by catalytic hydrogenolysis, and the resulting dipeptides or L-Glu-gamma-amides were condensed with the appropriate pteroic acid analogue trifluoroacetate salt using diethyl cyanophosphoridate as coupling reagent. Deprotection with trifluoroacetic acid in the final step gave the desired quinazoline gamma-linked dipeptides and L-Glu-gamma-amides as their trifluoroacetate salts. Nearly all the dipeptide analogues were potent inhibitors of TS, the best being ICI 198583-gamma-L-2-aminoadipate (IC50 = 2 nM). Several of these dipeptides were found to be susceptible to enzymatic hydrolysis in mice. The quinazoline monocarboxylate L-Glu-gamma-amides, lacking an alpha'-carboxyl group, are less active against TS and L1210 cell growth but are also not susceptible to enzymatic hydrolysis in mice.
Thirteen poly-gamma-glutamates derived from several novel antifolates have been synthesized by a convergent route. The syntheses of poly-gamma-glutamyl conjugates of N-[5-[N-(3,4-dihydro-2- methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-theno yl]-L-glutamic acid (8) (ICI D1694), 2-desamino-N10-propargyl-5,8-dideazafolic acid (6), 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (7), 2-desamino-2-methyl-N10-propargyl-2'-fluoro-5,8-dideazafolic acid (9), and 2-desamino-2-methyl-4-chloro-N10-propargyl-2'-fluoro-3,5,8-trideazafo lic acid (11) are described. A key step in the route involves coupling of an alpha-tert-butyl-protected poly-gamma-glutamate of the required chain length to the appropriate 5,8-dideazapteroic acid, obtained by carboxypeptidase G2 cleavage of the parent monoglutamate, if available, or by chemical synthesis. Deprotection with trifluoroacetic acid in the final step gave the desired poly-gamma-glutamyl antifolates as their trifluoroacetate salts. As inhibitors of thymidylate synthase, these polyglutamates were more potent in every case than the corresponding non-polyglutamylated drug.
The synthesis is described of four oligo(gamma-glutamyl) conjugates of N10-propargyl-5,8-dideazafolic acid containing a total of two, three, four, and five L-glutamic acid residues. The tert-butyl group was chosen as the carboxyl protecting group in order to obviate the use of alkali and thus the possibility of gamma----alpha transpeptidation. The starting material, di-tert-butyl glutamate, was coupled to N-(benzyloxycarbonyl)-L-glutamic acid alpha-tert-butyl ester via a mixed anhydride with isobutyl chloroformate. Hydrogenolysis of the benzyloxycarbonyl group in the product gave a carboxyl-protected diglutamate, which either was acylated with 4-[(benzyloxycarbonyl)amino] benzoyl chloride to give a protected aminobenzamide or was cycled further by using the above mixed anhydride/hydrogenolysis sequence into tri-, tetra-, and pentaglutamates. Each of the last named was also acylated, as above, to give a benzamide. The benzyloxycarbonyl group in the benzamides was removed by hydrogenolysis and the amino groups thus exposed were N-alkylated with propargyl bromide. The resulting proparglyamines were further alkylated with 2-amino-6-(bromomethyl)-4-hydroxyquinazoline hydrobromide to give the antifolate poly(t-Bu) esters. Deprotection with trifluoroacetic acid in the final step delivered the desired antifolates as their trifluoroacetate salts. The di- to pentaglutamates were, respectively, 31-, 97-, 171-, and 167-fold more inhibitory to WI-L2 human thymidylate synthase than the parent compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.