Thin-walled elements are widely used in the aerospace industry, where the aim is to reduce the process time and the weight of the structure while ensuring the sufficient quality of the finished product. Quality is determined by geometric structure parameters and dimensional and shape accuracy. The main problem encountered during the milling of thin-walled elements is the deformation of the product. Despite the various methods available for measuring deformation, more are still being developed. This paper presents selected surface topography parameters and deformation of vertical thin-walled elements during an experiment under controlled cutting conditions for samples from titanium alloy Ti6Al4V. Constant parameters of feed (f), cutting speed (Vc,) and tool diameter (D) were used. Samples were milled using a tool for general-purpose and a tool for high-performance machining, as well as two different machining approaches: with greater involvement of face milling, and cylindrical milling with a constant material removal rate (MRR). For samples with vertical thin walls, the parameters of waviness (Wa, Wz,) and roughness (Ra, Rz) were measured using a contact profilometer in the selected areas on both processed sides. Deformations were determined in selected cross-sections perpendicular and parallel to the bottom of the sample using GOM measurement (GOM—Global Optical Measurement). The experiment showed the possibility of measuring deformations and deflection arrows of thin-walled elements proceeded from titanium alloy using GOM measurement. Differences in selected surface topography parameters and deformations were observed for the machining methods used with an increased cross-section of the cut layer. A sample with a deviation of 0.08 mm from the assumed shape was obtained.
The article presents the impact of geological and mining factors on the stability of room excavations in the Legnica-Głogów Copper District (LGOM) in Poland. In underground mining, the primary task of bolting of mining excavations is to ensure their stability as an essential condition of work safety. Appreciating the role and importance of the rock bolting in Polish ore mining; rock bolt load sensors were designed, manufactured and tested under laboratory conditions. The purpose of the research was to characterize the sensors and determine the elastic range of the bearing plate, which are an integral part of the sensor. The sensors have been verified in industrial conditions. The tests were carried out in the underground copper ore mine in Poland. Three rooms in the exploitation field were selected for testing, where exploitation was carried out at a depth of 809–820 m below the ground surface with the application of room and pillar with roof deflection and maintaining the central part of the field. The exploitation field included 60 rooms and pillars. The effectiveness of the mechanical load sensor of the expansion rock bolt support has been experimentally confirmed. Based on mine research, it was found that the largest increases in the load of the rock bolting, vertical stress and convergence occur in the middle of the mining field.
Abstract. The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Po mines. In the underground mines of the Legnica-(LGOM) the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.
This paper discusses the pull-out laboratory tests and the monitoring of expansion-shell bolts with a length of 1.82 m. The bolts comprised the KE-3W expansion shell, a rod with a diameter of 0.0183 m and a profiled, circular plate with a diameter of 0.14 m, and a gauge of 0.006 m. The bolts were installed in a concrete block with a compressive strength of 75 MPa. The tests were conducted on a state-of-the-art test stand owned by the Department of Underground Mining of the AGH University of Science and Technology. The test stand can be used to test roof bolts on a geometric scale of 1:1 under static and rapidly varying loads. Also, the stand is suitable for testing rods measuring 5.5 m in length. The stand has a special feature of providing the ongoing monitoring of bolt load, displacement and deformation. The primary aim of the study was to compare the results recorded by two different measurement systems with the innovative Self-Excited Acoustic System (SAS) for measuring stress variations in roof bolts. In order to use the SAS, a special handle equipped with an accelerometer and exciter mounted to the nut or the upset end of the rod was designed at the Faculties of Mining and Geoengineering and Mechanical Engineering and Robotics of the AGH University of Science and Technology. The SAS can be used for nondestructive evaluation of performance of bolts around mining workings and in tunnels. Through laboratory calibration tests, roof bolt loads can be assessed using the in-situ non-destructive method.
The article presents a novel yielding mechanism, especially designed for the rock bolt support. Mechanical rock bolts with an expansion head and equipped with one, two, four and six dome bearing plates were tested in the laboratory conditions. Furthermore, in the Phase2D numerical program, five room and pillar widths were modeled. The main aim of numerical modeling was to determine the maximal range of the rock damage area and the total displacements in the expanded room. The models were made for a room and pillar method with a roof sag for copper ore deposits in the Legnica-Głogów Copper District in Poland. Additionally, in the article a load model of the rock bolt support as a result of a geomechanical seismic event is presented. Based on the results of laboratory tests (load–displacement characteristics), the strain energy of the bolt support equipped with the yielding device in the form of dome bearing plates was determined and compared with the impact energy caused by predicted falling rock layers. Based on the laboratory tests, numerical modeling and mathematical dynamic model of rock bolt support, the dependence of the drop height and the corresponding impact energy for the expanded room was determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.