We study the Ordered k-Median problem, in which the solution is evaluated by first sorting the client connection costs and then multiplying them with a predefined non-increasing weight vector (higher connection costs are taken with larger weights). Since the 1990s, this problem has been studied extensively in the discrete optimization and operations research communities and has emerged as a framework unifying many fundamental clustering and location problems such as k-Median and k-Center. This generality, however, renders the problem intriguing from the algorithmic perspective and obtaining non-trivial approximation algorithms was an open problem even for simple topologies such as trees. Recently, Aouad and Segev were able to obtain an O(log n) approximation algorithm for Ordered k-Median using a sophisticated local-search approach and the concept of surrogate models thereby extending the result by Tamir (2001) for the case of a rectangular weight vector, also known as k-Facility p-Centrum. The existence of a constant-factor approximation algorithm, however, remained open even for the rectangular case.In this paper, we provide an LP-rounding constant-factor approximation algorithm for the Ordered k-Median problem.We obtain this result by revealing an interesting connection to the classic k-Median problem. We first provide a new analysis of the rounding process by Charikar and Li (2012) for k-Median, when applied to a fractional solution obtained from solving an LP relaxation over a non-metric, truncated cost vector, resulting in an elegant 15-approximation for the rectangular case. In our analysis, the connection cost of a single client is partly charged to a deterministic budget related to a combinatorial bound based on guessing, and partly to a budget whose expected value is bounded with respect to the fractional LP-solution. This approach allows us to limit the problematic effect of the variance of individual client connection costs on the value of the ranking-based objective function of Ordered k-Median. Next, we analyze objective-oblivious clustering, which allows us to handle multiple rectangles in the weight vector and obtain a constant-factor approximation for the case of O(1) rectangles. Then, we show that a simple weight bucketing can be applied to the general case resulting in O(log n) rectangles and hence in a constant-factor approximation in quasi-polynomial time. Finally, with a more involved argument, we show that also the clever distance bucketing by Aouad and Segev can be combined with the objective-oblivious version of our LP-rounding for the rectangular case, and that it results in a true, polynomial time, constant-factor approximation algorithm.
In the k-Connectivity Augmentation Problem we are given a k-edge-connected graph and a set of additional edges called links. Our goal is to find a set of links of minimum size whose addition to the graph makes it (k + 1)-edge-connected. There is an approximation preserving reduction from the mentioned problem to the case k = 1 (a.k.a. the Tree Augmentation Problem or TAP) or k = 2 (a.k.a. the Cactus Augmentation Problem or CacAP). While several better-than-2 approximation algorithms are known for TAP, for CacAP only recently this barrier was breached (hence for k-Connectivity Augmentation in general). As a first step towards better approximation algorithms for CacAP, we consider the special case where the input cactus consists of a single cycle, the Cycle Augmentation Problem (CycAP). This apparently simple special case retains part of the hardness of the general case. In particular, we are able to show that it is APX-hard. In this paper we present a combinatorial $\left (\frac {3}{2}+\varepsilon \right )$ 3 2 + ε -approximation for CycAP, for any constant ε > 0. We also present an LP formulation with a matching integrality gap: this might be useful to address the general case of the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.