In the paper, the researches on sleeves made out of maraging steel 1.2709 using selective laser melting (SLM) technology are presented. This additive technology is recognized as favorable for the environment, due to 100% use of material and durability of manufactured details. The fabricated sleeves underwent subsequent tests, in particular, microhardness, porosity and homogeneity of the material was examined before and after heat treatment and salt bath nitrocarburizing process. Two kinds of fatigue tests were performed. The first consisted of the typical sinusoidal alternating load, the other was the high pressure pulse load test close to the real work conditions. It is of high importance that the fatigue strength of the tested sleeves is considerably higher than that of the similarly produced details shaped as a standard samples for tensile stress. The Mössbauer spectrometry analysis of hyperfine magnetic field distributions proved that SLM did not change considerably the martensite structure at atomic level.
In this paper, the results of research on additively manufactured aerospace parts made of maraging steel are presented. This state-of-the-art technology seems to have the highest potential for practical use in the field of ultra-light and high-performance aerospace hydraulic parts. The strength properties of representative specimens made with steel 1.2709 were investigated. The researchers conducted static tensile testing, fatigue tensile testing, and pressure impulse testing. A Goodman diagram was plotted to visualize the impact of the building orientation vs. load character on the fatigue strength of the additive manufacturing (AM) specimens. Based on the research carried out on the strength of the AM samples, an aircraft flight control actuator was designed to achieve the highest level of safety integrity along with the greatest simplicity and lowest weight relative to hydraulic actuators manufactured using classical methods. The entire design process was integrated with the manufacturing process to achieve this target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.