We applied large eddy simulation (LES) to predict the course of reactive mixing carried out in confined impinging jet reactors (CIJR). The reactive mixing process was studied in a wide range of flow rates both experimentally and numerically using computational fluid dynamics (CFD). We compared several different reactor geometries made in different sizes in terms of both reaction yields and mixing efficiency. Our LES model predictions were validated using experimental data for the tracer concentration distribution and fast parallel chemical test reactions, and compared with the k-ε model supplemented with the turbulent mixer model. We found that the mixing efficiency was not affected by the flow rate only at the highest tested Reynolds numbers. The experimental results and LES predictions were found to be in good agreement for all reactor geometries and operating conditions, while the k-ε model well predicted the trend of changes. The CFD method used, i.e., the modeling approach using closure hypothesis, was positively validated as a useful tool in reactor design. This method allowed us to distinguish the best reactors in terms of mixing efficiency (T-mixer III and V-mixer III) and could provide insights for scale-up and application in different processes.
Improvements in the diagnosis and treatment of cardiovascular diseases facilitate a better understanding of the ongoing process. The study of biomedical fluid dynamics using non-intrusive visualizing methods on a micro-scale has become possible using a proper 3D inkjet printing process. The computed tomography scan of a patient with atherosclerosis was processed, and a 3D-printed artery with an inlet diameter of 4.2 mm was developed and measured using three different constant flow rates. To mimic blood, a solution of glycerin and water was used. The procedure to obtain a proper 3D-printed model using low-force stereolithography technology with high-quality optical access usable for PIV was described and discussed. The paper presents the results of PIV as multi-stitched, color-coded vector maps from the axis cross section along the whole 3D-printed model. The obtained data allowed a resolution of 100 × 100 µm per single vector to be achieved. Furthermore, the results of the stitched 16 base images of the artery and the 3D-printed model prepared were included. The results of this study show that 3D prints allow for the creation of the desired geometry and can be used to investigate severe pathologies of the human circulatory system. The strengths and weaknesses of this methodology were discussed and compared to other techniques used to obtain transparent objects.
Paravalvular leaks (PVLs) may lead to hemolysis. In vitro shear stress forces above 300 Pa cause erythrocyte destruction. PVL channel dimensions may determine magnitude of shear stress forces that affect erythrocytes; however, this has not been tested. It remains unclear how different properties of PVL channels contribute to presence of hemolysis. A model of a left ventricle was created based on data from computer tomography with Slicer software PVLs of various shapes and sizes were introduced. Blood flow was simulated using ANSYS Fluent software. The following variables were examined: wall shear stress, shear stress in fluid, volume of PVL channel with shear stress exceeding 300 Pa, and duration of exposure of erythrocytes to shear stress values above 300 Pa. In all models, shear stress forces exceeded 300 Pa. Shear stress increased with blood flow rates and cross-sectional areas of any PVL. There was no linear relationship between cross-sectional area of a PVL and volume of a PVL channel with shear stress > 300 Pa. Blood flow through mitral PVLs is associated with shear stress above 300 Pa. Cross-sectional area of a PVL does not correlate with volume of a PVL channel with shear stress > 300 Pa and duration of exposure of erythrocytes to shear stress > 300 Pa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.