Metallodielectric materials with plasmonic resonances at optical and infrared wavelengths are attracting increasing interest, due to their potential novel applications in the fields of photonics, plasmonics and photovoltaics. However, simple and fast fabrication methods for three‐dimensional bulk plasmonic nanocomposites that offer control over the size, shape and chemical composition of the plasmonic elements have been missing. Here, such a manufacturing method and examples of experimental realizations of volumetric isotropic nanocomposites doped with plasmonic nanoparticles that exhibit resonances at visible and infrared wavelengths are presented. This method is based on doping a low‐melting dielectric material with plasmonic nanoparticles, using a directional glass‐solidification process. Transmission‐spectroscopy experiments confirm a homogenous distribution of the nanoparticles, isotropy of the material and resonant behavior. The phenomenon of localized surface plasmon resonance is also observed visually. This approach may enable rapid and cost‐efficient manufacturing of bulk nanoplasmonic composites with single or multiple resonances at various wavelength ranges. These composites could be isotropic or anisotropic, and potentially co‐doped with other chemical agents, in order to enhance different optical processes.
The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.