Abstract. Atmospheric chemistry transport models (ACTMs) are extensively used to provide scientific support for the development of policies to mitigate the detrimental effects of air pollution on human health and ecosystems. Therefore, it is essential to quantitatively assess the level of model uncertainty and to identify the model input parameters that contribute the most to the uncertainty. For complex process-based models, such as ACTMs, uncertainty and global sensitivity analyses are still challenging and are often limited by computational constraints due to the requirement of a large number of model runs. In this work, we demonstrate an emulator-based approach to uncertainty quantification and variance-based sensitivity analysis for the EMEP4UK model (regional application of the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre-West). A separate Gaussian process emulator was used to estimate model predictions at unsampled points in the space of the uncertain model inputs for every modelled grid cell. The training points for the emulator were chosen using an optimised Latin hypercube sampling design. The uncertainties in surface concentrations of O3, NO2, and PM2.5 were propagated from the uncertainties in the anthropogenic emissions of NOx, SO2, NH3, VOC, and primary PM2.5 reported by the UK National Atmospheric Emissions Inventory. The results of the EMEP4UK uncertainty analysis for the annually averaged model predictions indicate that modelled surface concentrations of O3, NO2, and PM2.5 have the highest level of uncertainty in the grid cells comprising urban areas (up to ±7 %, ±9 %, and ±9 %, respectively). The uncertainty in the surface concentrations of O3 and NO2 were dominated by uncertainties in NOx emissions combined from non-dominant sectors (i.e. all sectors excluding energy production and road transport) and shipping emissions. Additionally, uncertainty in O3 was driven by uncertainty in VOC emissions combined from sectors excluding solvent use. Uncertainties in the modelled PM2.5 concentrations were mainly driven by uncertainties in primary PM2.5 emissions and NH3 emissions from the agricultural sector. Uncertainty and sensitivity analyses were also performed for five selected grid cells for monthly averaged model predictions to illustrate the seasonal change in the magnitude of uncertainty and change in the contribution of different model inputs to the overall uncertainty. Our study demonstrates the viability of a Gaussian process emulator-based approach for uncertainty and global sensitivity analyses, which can be applied to other ACTMs. Conducting these analyses helps to increase the confidence in model predictions. Additionally, the emulators created for these analyses can be used to predict the ACTM response for any other combination of perturbed input emissions within the ranges set for the original Latin hypercube sampling design without the need to rerun the ACTM, thus allowing for fast exploratory assessments at significantly reduced computational costs.
Abstract. Atmospheric chemistry transport models (ACTMs) are widely used to underpin policy decisions associated with the impact of potential changes in emissions on future pollutant concentrations and deposition. It is therefore essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input pollutant emissions. ACTMs incorporate complex and non-linear descriptions of chemical and physical processes which means that interactions and non-linearities in input–output relationships may not be revealed through the local one-at-a-time sensitivity analysis typically used. The aim of this work is to demonstrate a global sensitivity and uncertainty analysis approach for an ACTM, using as an example the FRAME model, which is extensively employed in the UK to generate source–receptor matrices for the UK Integrated Assessment Model and to estimate critical load exceedances. An optimised Latin hypercube sampling design was used to construct model runs within ±40 % variation range for the UK emissions of SO2, NOx, and NH3, from which regression coefficients for each input–output combination and each model grid ( > 10 000 across the UK) were calculated. Surface concentrations of SO2, NOx, and NH3 (and of deposition of S and N) were found to be predominantly sensitive to the emissions of the respective pollutant, while sensitivities of secondary species such as HNO3 and particulate SO42−, NO3−, and NH4+ to pollutant emissions were more complex and geographically variable. The uncertainties in model output variables were propagated from the uncertainty ranges reported by the UK National Atmospheric Emissions Inventory for the emissions of SO2, NOx, and NH3 (±4, ±10, and ±20 % respectively). The uncertainties in the surface concentrations of NH3 and NOx and the depositions of NHx and NOy were dominated by the uncertainties in emissions of NH3, and NOx respectively, whilst concentrations of SO2 and deposition of SOy were affected by the uncertainties in both SO2 and NH3 emissions. Likewise, the relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4+, NO3−, SO42−, and HNO3) were due to uncertainties in at least two input variables. In all cases the spatial distribution of relative uncertainty was found to be geographically heterogeneous. The global methods used here can be applied to conduct sensitivity and uncertainty analyses of other ACTMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.