This study examined whether pupil size and response time would distinguish directed exploration from random exploration and exploitation. Eighty-nine participants performed the two-choice probabilistic learning task while their pupil size and response time were continuously recorded. Using LMM analysis, we estimated differences in the pupil size and response time between the advantageous and disadvantageous choices as a function of learning success, i.e., whether or not a participant has learned the probabilistic contingency between choices and their outcomes. We proposed that before a true value of each choice became known to a decision-maker, both advantageous and disadvantageous choices represented a random exploration of the two options with an equally uncertain outcome, whereas the same choices after learning manifested exploitation and direct exploration strategies, respectively. We found that disadvantageous choices were associated with increases both in response time and pupil size, but only after the participants had learned the choice-reward contingencies. For the pupil size, this effect was strongly amplified for those disadvantageous choices that immediately followed gains as compared to losses in the preceding choice. Pupil size modulations were evident during the behavioral choice rather than during the pretrial baseline. These findings suggest that occasional disadvantageous choices, which violate the acquired internal utility model, represent directed exploration. This exploratory strategy shifts choice priorities in favor of information seeking and its autonomic and behavioral concomitants are mainly driven by the conflict between the behavioral plan of the intended exploratory choice and its strong alternative, which has already proven to be more rewarding.
This study examined whether pupil size and response time would distinguish directed exploration from random exploration and exploitation. Eighty-nine participants performed the two-choice probabilistic learning task while their pupil size and response time were continuously recorded. Using LMM analysis, we estimated differences in the pupil size and response time between the advantageous and disadvantageous choices as a function of learning success, i.e., whether or not a participant has learned the probabilistic contingency between choices and their outcomes. We proposed that before a true value of each choice became known to a decision-maker, both advantageous and disadvantageous choices represented a random exploration of the two options with an equally uncertain outcome, whereas the same choices after learning manifested exploitation and direct exploration strategies, respectively. We found that disadvantageous choices were associated with increases both in response time and pupil size, but only after the participants had learned the choice-reward contingencies. For the pupil size, this effect was strongly amplified for those disadvantageous choices that immediately followed gains as compared to losses in the preceding choice. Pupil size modulations were evident during the behavioral choice rather than during the pretrial baseline. These findings suggest that occasional disadvantageous choices, which violate the acquired internal utility model, represent directed exploration. This exploratory strategy shifts choice priorities in favor of information seeking and its autonomic and behavioral concomitants are mainly driven by the conflict between the behavioral plan of the intended exploratory choice and its strong alternative, which has already proven to be more rewarding.
Currently, there are two opposing views on feature binding in the auditory modality: according to behavioral studies, this process requires focused attention, whereas electrophysiological studies suggest that feature binding may be fully automatic and independent of attention. Here, we examined whether feature binding depends on higher-level attentional processes by manipulating the attentional focus. We used four auditory stimuli that differed in two features: pitch and location. Two rare deviants could be detected within a sequence of two frequent standards exclusively by feature conjunctions rather than by any single feature alone. Event-related potentials to auditory stimuli were analyzed for four conditions: selective attention to target auditory deviants, selective ignoring of nontarget auditory deviants, nonselective distributed attention to all stimuli within auditory modality, and selective attention diverted from auditory to visual modality. The negative difference (Nd) between event-related potentials to deviants and standards was measured within two time intervals, corresponding to mismatch negativity (100-200 ms) and N2b (200-300 ms). Only under the condition of selective attention to specific feature conjunctions, prominent Nd was observed in mismatch negativity as well in N2b time ranges, whereas no significant Nd was observed in other conditions. As Nd is considered a marker of deviance processing, our results support the view that deviance was not detected unless attention was focused on the stimuli, thus supporting the view that feature binding requires attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.