Summary Release of cytoplasmic proteins into the supernatant occurs both in bacteria and eukaryotes. Since the underlying mechanism remains unclear, the excretion of cytoplasmic proteins (ECP) has been referred to as ‘non-classical protein secretion’. We show that none of the known specific protein transport systems of Gram-positive bacteria are involved in ECP. However, the expression of the cationic and amphipathic α-type phenol-soluble modulins (PSMs), particularly of PSMα2, significantly increased ECP; while PSMβ peptides or δ-toxin have no effect on ECP. Since psm expression is strictly controlled by the accessory gene regulator (agr), ECP was also reduced in agr-negative mutants. PSMα peptides damage the cytoplasmic membrane as indicated by the release of not only CPs, but also lipids, nucleic acids and ATP. Thus, our results show that in Staphylococcus aureus, PSMα peptides non-specifically boost the translocation of CPs by their membrane damaging activity.
TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The Aand Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GSTnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.
Biological nitrogen fixation (BNF) is a high energy demanding process carried out by diazotrophic microorganisms that supply combined nitrogen to the biosphere. The genes related to BNF are strictly regulated, but these mechanisms are poorly understood in gram-positive bacteria. The transcription factor GlnR was proposed to regulate nitrogen fixation-related genes based on Paenibacillus comparative genomics. In order to validate this proposal, we investigated BNF regulatory sequences in Paenibacillus riograndensis SBR5 genome. We identified GlnR-binding sites flanking σ -binding sites upstream from BNF-related genes. GlnR binding to these sites was demonstrated by surface plasmon resonance spectroscopy. GlnR-DNA affinity is greatly enhanced when GlnR is in complex with feedback-inhibited (glutamine-occupied) glutamine synthetase (GS). GlnR-GS complex formation is also modulated by ATP and AMP. Thereby, gene repression exerted by the GlnR-GS complex is coupled with nitrogen (glutamine levels) and energetic status (ATP and AMP). Finally, we propose a DNA-looping model based on multiple operator sites that represents a strong and strict regulation for these genes.
Life on Earth relies on carbon and nitrogen assimilation by RubisCO and GS-GOGAT enzymes, respectively, whose activities depend on a constant supply of inorganic carbon (Ci) and nitrogen (N). Members of the PII signal transduction superfamily are among the most ancient and widespread cell signaling proteins in nature. One of their most highly conserved functions is controlling Ci- and N-transporters, a feature found in different phyla of the Archaea and in both Gram-positive and Gram-negative bacteria. Recently, we identified the PII-like protein SbtB as Ci-sensing module, mainly controlling the HCO3- transporter SbtA in cyanobacteria. Similar to canonical PII proteins, SbtB is able to bind the adenine nucleotides ATP and ADP. Unlike those, it also binds AMP and preferentially binds the second messenger cAMP and c-di-AMP. The functional significance of the binding of different adenyl-nucleotides to SbtB has remained elusive, particularly in the context of the interaction of SbtB with SbtA. By a combination of structural, biochemical and physiological analysis, we revealed that by binding to SbtA, SbtB acts as unidirectional valve, preventing the reverse transport of intracellular enriched bicarbonate. This mechanistic principle holds true for the PII protein from Bacillus acting on the ammonium transporter AmtB, suggesting an evolutionary conserved role for PII superfamily proteins in controlling unidirectional flow of different transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.