The interaction of organic matter with mineral components of the solid phase of soils is the most important process that regulates the cycle and balance of carbon in the biosphere. The adsorption of humic acids on minerals is accompanied by their fractionation in size, composition, and amphiphilicity, thus decreasing their heterogeneity. Despite a strong interest in studying the regularities and mechanisms of the interaction between natural organic matter and layered aluminosilicates, it is necessary to take into account the natural diversity of soil organic matter, adsorption conditions, and mineral composition. This study was designed to investigate the adsorption regularities of fulvic acid (FA) and water-extractable organic matter (WEOM) isolated from horizon H of peaty-podzolic-gleyic soil on kaolinite and muscovite. Sorbates and sorbents were examined by the following methods: high-pressure size exclusion chromatography (HPSEC), high-performance liquid chromatography (HPLC), and potentiometric titration. The specific surface areas of the sorbents were determined by the sorption of N2 molecules. We found that hydrophobic components of FA and WEOM are mainly adsorbed on mineral surfaces. The adsorption of FA and WEOM on kaolinite and muscovite is followed by decreased hydrophobicity of organic matter and decreased heterogeneity of its amphiphilic properties in an equilibrium solution. At pH levels around 6, sorption of organic matter from FA solution containing 19% and 81% hydrophilic and hydrophobic components, respectively, onto kaolinite and muscovite occurs mainly due to hydrophobic components. Hydrophobic interactions on siloxane surfaces are the main mechanism to fix FA on both minerals. Kaolinite adsorbs slightly more organic carbon per unit area than muscovite. The adsorption of WEOM from a solution with 41% hydrophilic and 59% hydrophobic components results not only from hydrophobic and hydrophilic components but also from hydrophobic and electrostatic interactions and depends on pH. The most hydrophobic fractions of organic matter are adsorbed from the hydrophobic components on the surface of both minerals. Under conditions of the performed experiments at pH < 5, more WEOM is adsorbed on muscovite than on kaolinite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.