Isotopic fractionation in the photodissociation of N could explain the considerable variation in the N/N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.
Our quantum device is a solid-state array of semiconducting quantum dots that is addressed and read by 2D electronic spectroscopy. The experimental ultrafast dynamics of the device is well simulated by solving the time-dependent Schrödinger equation for a Hamiltonian that describes the lower electronically excited states of the dots and three laser pulses. The time evolution induced in the electronic states of the quantum device is used to emulate the quite different nonequilibrium vibrational dynamics of a linear triatomic molecule. We simulate the energy transfer between the two local oscillators and, in a more elaborate application, the expectation values of the quantum mechanical creation and annihilation operators of each local oscillator. The simulation uses the electronic coherences engineered in the device upon interaction with a specific sequence of ultrafast pulses. The algorithm uses the algebraic description of the dynamics of the physical problem and of the hardware.
The vibrational dynamics in a linear triatomic molecule is emulated by a quantum information processing device operating in parallel. The quantum device is an ensemble of semiconducting quantum dot dimers addressed and probed by ultrafast laser pulses in the visible frequency range at room temperature. A realistic assessment of the inherent noise due to the inevitable size dispersion of colloidal quantum dots is taken into account and limits the time available for computation. At the short times considered only the electronic states of the quantum dots respond to the excitation. A model for the electronic states quantum dot (QD) dimers is used which retains the eight lowest bands of excitonic dimer states build on the lowest and first excited states of a single QD. We show how up to 8 2 64 quantum logic variables can be realistically measured and used to process information for this QD dimer electronic level structure. This is achieved by addressing the lowest and second excited electronic states of the QD's. With a narrower laser bandwidth ( longer pulse) only the lower band of excited states can be coherently addressed enabling 4 2 16 logic variables. Already this is sufficient to emulate both energy transfer between the two oscillators and coherent motions in the vibrating molecule.
Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution.
Progress towards quantum technologies continues to provide essential new insights on the microscopic dynamics of systems in phase space. This highlights coherence effects whether these are due to ultrafast lasers whose energy width spans several states all the way to the output of quantum computing. Surprisal analysis has provided seminal insights on the probability distributions of quantum systems from elementary particle and also nuclear physics, through molecular reaction dynamics to system biology. It is therefore necessary to extend surprisal analysis to the full quantum regime where it characterizes not only the probabilities of states but also their coherence. In principle this can be done by the maximal entropy formalism but in the full quantum regime its application is far from trivial [E.g., S. Dagan and Y. Dothan, Phys Rev D 26, 248 1982] because an exponential function of not commuting operators is not easily accommodated. Starting from an exact dynamical approach we develop a description of the dynamics where the quantum mechanical surprisal, a linear combination of operators, plays a central role. We provide an explicit route to the Lagrange multipliers of the system and identify those operators that act as the dominant constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.