Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1 sema/sema mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS–like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites) and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31) and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H). All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I) or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H), which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.
The genetic causes of premature ovarian failure (POF) are highly heterogeneous, and causative mutations have been identified in more than ten genes so far. In two families affected by POF accompanied by hearing loss (together, these symptoms compose Perrault syndrome), exome sequencing revealed mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase: homozygous c.1565C>A (p.Thr522Asn) in a consanguineous Palestinian family and compound heterozygous c.1077delT and c.1886C>T (p.Thr629Met) in a nonconsanguineous Slovenian family. LARS2 c.1077delT leads to a frameshift at codon 360 of the 901 residue protein. LARS2 p.Thr522Asn occurs in the LARS2 catalytic domain at a site conserved from bacteria through mammals. LARS2 p.Thr629Met occurs in the LARS2 leucine-specific domain, which is adjacent to a catalytic loop critical in all species but for which primary sequence is not well conserved. A recently developed method of detecting remote homologies revealed threonine at this site in consensus sequences derived from multiple-species alignments seeded by human and E. coli residues at this region. Yeast complementation indicated that LARS2 c.1077delT is nonfunctional and that LARS2 p.Thr522Asn is partially functional. LARS2 p.Thr629Met was functional in this assay but might be insufficient as a heterozygote with the fully nonfunctional LARS2 c.1077delT allele. A known C. elegans strain with the protein-truncating alteration LARS-2 p.Trp247Ter was confirmed to be sterile. After HARS2, LARS2 is the second gene encoding mitochondrial tRNA synthetase to be found to harbor mutations leading to Perrault syndrome, further supporting a critical role for mitochondria in the maintenance of ovarian function and hearing.
Premature ovarian failure (POF) occurs in 1% of all women, and in 0.1% of women under the age of 30 years. The mechanisms that give rise to POF are largely unknown. Inhibin has a role in regulating the pituitary secretion of FSH, and is therefore a potential candidate gene for ovarian failure. Using single-stranded conformation polymorphism (SSCP) and DNA sequencing, DNA samples were screened from 43 women with POF for mutations in the three inhibin genes. Two variants were found: a 1032C-->T transition in the INHssA gene in one patient, and a 769G-->A transition in the INHalpha gene in three patients. The INHssA variant appears to be a polymorphism, as there was no change in the amino acid sequence of the gene product. The INHalpha variant resulted in a non-conservative amino acid change, with a substitution from alanine to threonine. This alanine is highly conserved across species, and has the potential to affect receptor binding. The INHalpha variant is significantly associated with POF (3/43 patients; 7%) compared with control samples (1/150 normal controls; 0.7%) (Fisher's exact test, P < 0.035). Further analysis of the inhibin gene in POF patients and matched controls will determine its role in the aetiology of POF.
Predicting preterm birth is uncertain, and numerous scientists are searching for non-invasive methods to improve its predictability. Current researches are based on the analysis of ElectroHysteroGram (EHG) records, which contain information about the electrophysiological properties of the uterine muscle and uterine contractions. Since pregnancy is a long process, we decided to also characterize, for the first time, non-contraction intervals (dummy intervals) of the uterine records, i.e., EHG signals accompanied by a simultaneously recorded external tocogram measuring mechanical uterine activity (TOCO signal). For this purpose, we developed a new set of uterine records, TPEHGT DS, containing preterm and term uterine records of pregnant women, and uterine records of non-pregnant women. We quantitatively characterized contraction intervals (contractions) and dummy intervals of the uterine records of the TPEHGT DS in terms of the normalized power spectra of the EHG and TOCO signals, and developed a new method for predicting preterm birth. The results on the characterization revealed that the peak amplitudes of the normalized power spectra of the EHG and TOCO signals of the contraction and dummy intervals in the frequency band 1.0-2.2 Hz, describing the electrical and mechanical activity of the uterus due to the maternal heart (maternal heart rate), are high only during term pregnancies, when the delivery is still far away; and they are low when the delivery is close. However, these peak amplitudes are also low during preterm pregnancies, when the delivery is still supposed to be far away (thus suggesting the danger of preterm birth); and they are also low or barely present for non-pregnant women. We propose the values of the peak amplitudes of the normalized power spectra due to the influence of the maternal heart, in an electro-mechanical sense, in the frequency band 1.0-2.2 Hz as a new biophysical marker for the preliminary, or early, assessment of the danger of preterm birth. The classification of preterm and term, contraction and dummy intervals of the TPEHGT DS, for the task of the automatic prediction of preterm birth, using sample entropy, the median frequency of the power spectra, and the peak amplitude of the normalized power spectra, revealed that the dummy intervals provide quite comparable and slightly higher classification performances than these features obtained from the contraction intervals. This result suggests a novel and simple clinical technique, not necessarily to seek contraction intervals but using the dummy intervals, for the early assessment of the danger of preterm birth. Using the publicly available TPEHG DB database to predict preterm birth in terms of classifying between preterm and term EHG records, the proposed method outperformed all currently existing methods. The achieved classification accuracy was 100% for early records, recorded around the 23rd week of pregnancy; and 96.33%, the area under the curve of 99.44%, for all records of the database. Since the proposed method is capable ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.