Dehydration or desiccation is one of the most frequent and severe challenges to living cells. The bacterium Deinococcus radiodurans is the best known extremophile among the few organisms that can survive extremely high exposures to desiccation and ionizing radiation, which shatter its genome into hundreds of short DNA fragments. Remarkably, these fragments are readily reassembled into a functional 3.28-megabase genome. Here we describe the relevant two-stage DNA repair process, which involves a previously unknown molecular mechanism for fragment reassembly called 'extended synthesis-dependent strand annealing' (ESDSA), followed and completed by crossovers. At least two genome copies and random DNA breakage are requirements for effective ESDSA. In ESDSA, chromosomal fragments with overlapping homologies are used both as primers and as templates for massive synthesis of complementary single strands, as occurs in a single-round multiplex polymerase chain reaction. This synthesis depends on DNA polymerase I and incorporates more nucleotides than does normal replication in intact cells. Newly synthesized complementary single-stranded extensions become 'sticky ends' that anneal with high precision, joining together contiguous DNA fragments into long, linear, double-stranded intermediates. These intermediates require RecA-dependent crossovers to mature into circular chromosomes that comprise double-stranded patchworks of numerous DNA blocks synthesized before radiation, connected by DNA blocks synthesized after radiation.
SummaryBacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system PtkA/PtpZ was previously shown to regulate the phosphorylation state of UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. This promiscuity towards substrates is reminiscent of eukaryal kinases and has prompted us to investigate possible physiological effects of ptkA and ptpZ gene inactivations in this study. We were unable to identify any striking phenotypes related to control of UDP-glucose dehydrogenases, natural competence and DNA lesion repair; however, a very strong phenotype of DptkA emerged with respect to DNA replication and cell cycle control, as revealed by flow cytometry and fluorescent microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.