Cancer is most deadly human disease. According to WHO 7.6 million deaths (around 13% of all deaths) in 2008 were caused by cancer. A Cancer diagnosis can be achieved with gene expression microarray data. Microarray allows monitoring of thousands of genes of a sample simultaneously. But all the genes in gene expression data are not informative. The relevant gene selection/extraction is the main challenge in microarray data analysis. Microarray data classification is two stage process i.e. features selection and classification. Feature selection techniques are used to extract a small subset of relevant genes without degrading the performance of classifier. The classifier uses these extracted relevant genes for cancer classification. In this review paper there is a comparative study of the feature selection and classification techniques. The evaluation criteria are applied to find out the best combination of feature selection and classification technique for accurate cancer classification General TermsCancer classification
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.