Osteosarcoma (OS) is a rare malignancy of bone associated with poor clinical outcomes. The antitumor effects of GANT61 on OS is unclear. To investigate antitumor effects and mechanism of GANT61 in OS cells and xenograft model. Effects of GANT61 on cell viability, clone formation, cell cycle, apoptosis, migration, and invasion ability of OS cells were assessed. Reactive oxygen species (ROS) levels measured by dichlorofluorescein fluorescence were used to evaluate oxidative stress. The Xenograft model was constructed to investigate the antitumor effects of GANT61 in vivo. The microRNA (miRNA)‐1286 was downregulated, while RAB31 upregulated in OS tissues and cells. GANT61 inhibited viability, migration, and invasion ability of OS cells (SaOS‐2 and U2OS), and induced apoptosis and the ROS production, along with miRNA‐1286 upregulation and RAB13 downregulation. After knockdown of miRNA‐1286, GANT6‐induced cell inhibition was attenuated, along with RAB31 upregulation. Inversely, miRNA‐1286 overexpression downregulated RAB31. Dual‐luciferase reporter assay verified that miR‐1286 negatively targeted RAB13. Moreover, the knockdown of RAB31 stimulated apoptosis and ROS production while inhibited viability, migration, and invasion of GANT61‐treated cells. In vivo experiments further confirmed that GANT61 inhibited tumor growth and RAB13 expression, but enhanced miRNA‐1286. The study demonstrated that GANT61 inhibited cell aggressive phenotype and tumor growth by inducing oxidative stress through the miRNA‐1286/RAB31 axis. Our findings provided a potential antitumor agent for the OS clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.