This study developed multi-layered lidocaine-and epinephrine-eluting biodegradable poly[(D,L)-lactide-co-glyco lide] (PLGA)/collagen nanofibers. An electrospinning technique was employed to fabricate the multi-layer biodegradable drug-eluting nanofibers. After fabrication, the nanofibrous membranes were characterized. The drug release characteristics were also investigated. In addition, the in vivo efficacy of nanofibers for pain relief and hemostasis in palatal oral wounds of rabbits were evaluated. Histological examinations were also completed. The experimental results suggested that all nanofibers exhibited good biocompatibility and eluted effective levels of lidocaine and epinephrine at the initial stages of wound recovery.
In this study, we explored the release characteristics of analgesics, namely levobupivacaine, lidocaine, and acemetacin, from electrosprayed poly(D,L-lactide-co-glycolide) (PLGA) microparticles. The drug-loaded particles were prepared using electrospraying techniques and evaluated for their morphology, drug release kinetics, and pain relief activity. The morphology of the produced microparticles elucidated by scanning electron microscopy revealed that the optimal parameters for electrospraying were 9 kV, 1 mL/h, and 10 cm for voltage, flow rate, and travel distance, respectively. Fourier-transform infrared spectrometry indicated that the analgesics had been successfully incorporated into the PLGA microparticles. The analgesic-loaded microparticles possessed low toxicity against human fibroblasts and were able to sustainably elute levobupivacaine, lidocaine, and acemetacin in vitro. Furthermore, electrosprayed microparticles were found to release high levels of lidocaine and acemetacin (well over the minimum therapeutic concentrations) and levobupivacaine at the fracture site of rats for more than 28 days and 12 days, respectively. Analgesic-loaded microparticles demonstrated their effectiveness and sustained performance for pain relief in fracture injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.