Early identification of adolescents at high imminent risk for clinical depression could significantly reduce the burden of the disease. This study demonstrated that acoustic speech analysis and classification can be used to determine early signs of major depression in adolescents, up to two years before they meet clinical diagnostic criteria for the full-blown disorder. Individual contributions of four different types of acoustic parameters [prosodic, glottal, Teager's energy operator (TEO), and spectral] to depression-related changes of speech characteristics were examined. A new computational methodology for the early prediction of depression in adolescents was developed and tested. The novel aspect of this methodology is in the introduction of multichannel classification with a weighted decision procedure. It was observed that single-channel classification was effective in predicting depression with a desirable specificity-to-sensitivity ratio and accuracy higher than chance level only when using glottal or prosodic features. The best prediction performance was achieved with the new multichannel method, which used four features (prosodic, glottal, TEO, and spectral). In the case of the person-based approach with two sets of weights, the new multichannel method provided a high accuracy level of 73% and the sensitivity-to-specificity ratio of 79%/67% for predicting future depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.