BackgroundBilateral symmetry flower (zygomorphy) is the ancestral state for Gesneriaceae species. Yet independent reversions to actinomorphy have been parallelly evolved in several lineages. Conandron ramondioides is a natural radially symmetrical species survived in dense shade mountainous habitats where specialist pollinators are scarce. Whether the mutations in floral symmetry genes such as CYC, RAD and DIV genes, or their expression pattern shifts contribute to the reversion to actinomorphy in C. ramondioides thus facilitating shifts to generalist pollinators remain to be investigated. To address this, we isolated putative orthologues of these genes and relate their expressions to developmental stages of flower actinomorphy.ResultsTissue specific RT-PCR found no dorsal identity genes CrCYCs and CrRADs expression in petal and stamen whorls, while the ventral identity gene CrDIV was expressed in all petals. Thus, ventralized actinomorphy is evolved in C. ramondioides. However, CrCYCs still persists their expression in sepal whorl. This is congruent with previous findings that CYC expression in sepals is an ancestral state common to both actinomorphic and zygomorphic core Eudicot species.ConclusionsThe loss of dorsal identity genes CrCYCs and CrRADs expression in petal and stamen whorl without mutating these genes specifies that a novel regulation change, possibly on cis-elements of these genes, has evolved to switch zygomorphy to actinomorphy.Electronic supplementary materialThe online version of this article (10.1186/s40529-018-0242-x) contains supplementary material, which is available to authorized users.
With the growing demand for its ornamental uses, the African violet (Saintpaulia ionantha) has been popular owing to its variations in color, shape and its rapid responses to artificial selection. Wild type African violet (WT) is characterized by flowers with bilateral symmetry yet reversals showing radially symmetrical flowers such as dorsalized actinomorphic (DA) and ventralized actinomorphic (VA) peloria are common. Genetic crosses among WT, DA, and VA revealed that these floral symmetry transitions are likely to be controlled by three alleles at a single locus in which the levels of dominance are in a hierarchical fashion. To investigate whether the floral symmetry gene was responsible for these reversals, orthologs of CYCLOIDEA (CYC) were isolated and their expressions correlated to floral symmetry transitions. Quantitative RT-PCR and in situ results indicated that dorsal-specific SiCYC1s expression in WT S. ionantha (SCYC1A and SiCYC1B) shifted in DA with a heterotopically extended expression to all petals, but in VA, SiCYC1s' dorsally specific expressions were greatly reduced. Selection signature analysis revealed that the major high-expressed copy of SCYC1A had been constrained under purifying selection, whereas the low-expressed helper SiCYC1B appeared to be relaxed under purifying selection after the duplication into SCYC1A and SiCYC1B. Heterologous expression of SCYC1A in Arabdiopsis showed petal growth retardation which was attributed to limited cell proliferation. While expression shifts of SCYC1A and SiCYC1B correlate perfectly to the resulting symmetry phenotype transitions in F1s of WT and DA, there is no certain allelic combination of inherited SiCYC1s associated with specific symmetry phenotypes. This floral transition indicates that although the expression shifts of SCYC1A/1B are responsible for the two contrasting actinomorphic reversals in African violet, they are likely to be controlled by upstream trans-acting factors or epigenetic regulations.
WRKY transcription factors (TFs), which make up one of the largest families of TFs in the plant kingdom, are key players in modulating gene expression relating to embryogenesis, senescence, pathogen resistance, and abiotic stress responses. However, the phylogeny and grouping of WRKY TFs and how their binding ability is affected by the flanking regions of W-box sequences remain unclear. In this study, we reconstructed the phylogeny of WRKY across the plant kingdom and characterized the DNA-binding profile of Arabidopsis thaliana WRKY (WRKY54) based on its W-box recognition sequence. We found that WRKY TFs could be separated into five clades, and that the functional zinc-finger motif at the C-terminal of WRKY appeared after several nucleotide substitutions had occurred at the 3′-end of the zinc-finger region in chlorophytes. In addition, we found that W-box flanking regions affect the binding ability of WRKY54 based on the results of a fluorescence-based electrophoretic mobility shift assay (fEMSA) and quartz crystal microbalance (QCM) analysis. The great abundance of WRKY TFs in plants implicates their involvement in diverse molecular regulatory networks, and the flanking regions of W-box sequences may contribute to their molecular recognition mechanism. This phylogeny and our findings on the molecular recognition mechanism of WRKY TFs should be helpful for further research in this area.
Floral bilateral symmetry is one of the most important acquisitions in flower shape evolution in angiosperms. Members of Gesneriaceae possess predominantly zygomorphic flowers yet natural reversal to actinomorphy have independently evolved multiple times. The development of floral bilateral symmetry relies greatly on the gene CYCLOIDEA (CYC). Our reconstructed GCYC phylogeny indicated at least five GCYC duplication events occurred over the evolutionary history of Gesneriaceae. However, the patterns of GCYC expression following the duplications and the role of natural selection on GCYC copies in relation to floral symmetry remained largely unstudied. The Asiatic tribe Trichosporeae contains most reversals to actinomorphy. We thus investigated shifts in GCYC gene expression among selected zygomorphic species (Hemiboea bicornuta and Lysionotus pauciflorus) and species with reversals to actinomorphy (Conandron ramondioides) by RT-PCR. In the actinomorphic C. ramondioides, none of the three copies of GCYC was found expressed in petals implying that the reversal was a loss-of-function event. On the other hand, both zygomorphic species retained one GCYC1 copy that was expressed in the dorsal petals but each species utilized a different copy (GCYC1C for H. bicornuta and GCYC1D for L. pauciflorus). Together with previously published data, it appeared that GCYC1C and GCYC1D copies diversified their expression in a distinct species-specific pattern. To detect whether the selection signal (ω) changed before and after the duplication of GCYC1 in Asiatic Trichosporeae, we reconstructed a GCYC phylogeny using maximum likelihood and Bayesian inference algorithms and examined selection signals using PAML. The PAML analysis detected relaxation from selection right after the GCYC1 duplication (ωpre-duplication = 0.2819, ωpost-duplication = 0.3985) among Asiatic Trichosporeae species. We propose that the selection relaxation after the GCYC1 duplication created an "evolutionary window of flexibility" in which multiple copies were retained with randomly diverged roles for dorsal-specific expressions in association with floral symmetry changes.
Absorption of macronutrients such as nitrogen is a critical process for land plants. There is little information available on the correlation between the root evolution of land plants and the protein regulation of nitrogen absorption and responses. NIN-like protein (NLP) transcription factors contain a Phox and Bem1 (PB1) domain, which may regulate nitrate-response genes and seem to be involved in the adaptation to growing on land in terms of plant root development. In this report, we reveal the NLP phylogeny in land plants and the origin of NLP genes that may be involved in the nitrate-signaling pathway. Our NLP phylogeny showed that duplication of NLP genes occurred before divergence of chlorophyte and land plants. Duplicated NLP genes may lost in most chlorophyte lineages. The NLP genes of bryophytes were initially monophyletic, but this was followed by divergence of lycophyte NLP genes and then angiosperm NLP genes. Among those identified NLP genes, PB1, a protein–protein interaction domain was identified across our phylogeny. To understand how protein–protein interaction mediate via PB1 domain, we examined the PB1 domain of Arabidopsis thaliana NLP7 (AtNLP7) in terms of its molecular oligomerization and function as representative. Based on the structure of the PB1 domain, determined using small-angle x-ray scattering (SAXS) and site-directed mutagenesis, we found that the NLP7 PB1 protein forms oligomers and that several key residues (K867 and D909/D911/E913/D922 in the OPCA motif) play a pivotal role in the oligomerization of NLP7 proteins. The fact that these residues are all conserved across land plant lineages means that this oligomerization may have evolved after the common ancestor of extant land plants colonized the land. It would then have rapidly become established across land-plant lineages in order to mediate protein–protein interactions in the nitrate-signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.