The antihistamine clemastine inhibits multiple stages of thePlasmodiumparasite that causes malaria, but the molecular targets responsible for its parasite inhibition were unknown. Here, we applied parallel chemoproteomic platforms to discover the mechanism of action of clemastine and identify that clemastine binds to thePlasmodium falciparumTCP-1 ring complex or chaperonin containing TCP-1 (TRiC/CCT), an essential heterooligomeric complex required for de novo cytoskeletal protein folding. Clemastine destabilized all eightP. falciparumTRiC subunits based on thermal proteome profiling (TPP). Further analysis using stability of proteins from rates of oxidation (SPROX) revealed a clemastine-induced thermodynamic stabilization of thePlasmodiumTRiC delta subunit, suggesting an interaction with this protein subunit. We demonstrate that clemastine reduces levels of the major TRiC substrate tubulin inP. falciparumparasites. In addition, clemastine treatment leads to disorientation ofPlasmodiummitotic spindles during the asexual reproduction and results in aberrant tubulin morphology suggesting protein aggregation. This clemastine-induced disruption of TRiC function is not observed in human host cells, demonstrating a species selectivity required for targeting an intracellular human pathogen. Our findings encourage larger efforts to apply chemoproteomic methods to assist in target identification of antimalarial drugs and highlight the potential to selectively targetPlasmodiumTRiC-mediated protein folding for malaria intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.