Long-lived excited states of interacting quantum systems that retain quantum correlations and evade thermalization are of great fundamental interest. We create nonthermal states in a bosonic one-dimensional (1D) quantum gas of dysprosium by stabilizing a super-Tonks-Girardeau gas against collapse and thermalization with repulsive long-range dipolar interactions. Stiffness and energy-per-particle measurements show that the system is dynamically stable regardless of contact interaction strength. This enables us to cycle contact interactions from weakly to strongly repulsive, then strongly attractive, and finally weakly attractive. We show that this cycle is an energy-space topological pump (caused by a quantum holonomy). Iterating this cycle offers an unexplored topological pumping method to create a hierarchy of increasingly excited prethermal states.
Nonlinear optical effects play key roles to communication, sensing, imaging, and so on. Recently, nonlinear scattering (saturation and reverse saturation) was discovered in gold nanospheres, providing a novel approach to nonbleaching super-resolution microscopy. However, the nonlinearity was previously limited to green-orange plasmonic band. It is highly desirable to extend the applicable wavelength range. In this work, we demonstrated nonlinear scattering in near-infrared with gold nanorods and in blue-violet with silver nanospheres. Besides, the nonlinear mechanism is clarified via different material/geometry. By spectrally decoupling the contributions of plasmonic absorption/scattering and interband/intraband transitions, we have verified plasmonic absorption, and the subsequent thermal effects to be the dominating source of nonlinearity. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multicolor super-resolution imaging based on plasmonic scattering.
Nonlinear plasmonics has attracted a lot of interests due to its wide applications. Recently, we demonstrated saturation and reverse saturation of scattering from a single plasmonic nanoparticle, which exhibits extremely narrow side lobes and central peaks in scattering images [ACS Photonics 1(1), 32 (2014)]. It is desirable to extract the reversed saturated part to further enhance optical resolution. However, such separation is not possible with conventional confocal microscope. Here we combine reverse saturable scattering and saturated excitation (SAX) microscopy. With quantitative analyses of amplitude and phase of SAX signals, unexpectedly high-order nonlinearities are revealed. Our result provides greatly reduced width in point spread function of scattering-based optical microscopy. It will find applications in not only nonlinear material analysis, but also high-resolution biomedical microscopy.
Plasmonics, which are based on the collective oscillation of electrons due to light excitation, involve strongly enhanced local electric fields and thus have potential applications in nonlinear optics, which requires extraordinary optical intensity. One of the most studied nonlinearities in plasmonics is nonlinear absorption, including saturation and reverse saturation behaviors. Although scattering and absorption in nanoparticles are closely correlated by the Mie theory, there has been no report of nonlinearities in plasmonic scattering until very recently.Last year, not only saturation, but also reverse saturation of scattering in an isolated plasmonic particle was demonstrated for the first time. The results showed that saturable scattering exhibits clear wavelength dependence, which seems to be directly linked to the localized surface plasmon resonance (LSPR). Combined with the intensity-dependent measurements, the results suggest the possibility of a common mechanism underlying the nonlinear behaviors of scattering and absorption. These nonlinearities of scattering from a single gold nanosphere (GNS) are widely applicable, including in super-resolution microscopy and optical switches.In this paper, it is described in detail how to measure nonlinearity of scattering in a single GNP and how to employ the super-resolution technique to enhance the optical imaging resolution based on saturable scattering. This discovery features the first super-resolution microscopy based on nonlinear scattering, which is a novel non-bleaching contrast method that can achieve a resolution as low as l/8 and will potentially be useful in biomedicine and material studies. Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.