Tetradentate bis(pyridyl azolate) chelates are assembled by connecting two bidentate 3-trifluoromethyl-5-(2-pyridyl)azoles at the six position of pyridyl fragment with the tailored spiro-arranged fluorene and/or acridine functionalities. These new chelates were then utilized in synthesizing a series of Pt(II) metal complexes [Pt(Ln)], n = 1-5, from respective chelates L1-L5 and [PtCl2(DMSO)2] in 1,2-dimethoxyethane. The single-crystal X-ray structural analyses were executed on 1, 3, and 5 to reveal the generalized structures and packing arrangement in crystal lattices. Their photophysical properties were measured in both solution and solid state and are discussed in the context of computational analysis. These L1-L5 coordinated Pt(II) species exhibit intense emission, among which complex 5 shows remarkable solvatochromic phosphorescence due to the dominant intraligand charge transfer transition induced by the new bis(pyridyl azolate) chelates. Moreover, because of the higher-lying highest occupied molecular orbital of acridine, complex 5 can be considered as a novel bipolar phosphor. Successful fabrication of blue and white organic light-emitting diodes (OLEDs) using Pt(II) complexes 3 and 5 as the phosphorescent dopants are reported. In particular, blue OLEDs with 5 demonstrated peak efficiencies of 15.3% (36.3 cd/A, 38.0 lm/W), and CIE values of (0.190, 0.342) in a double-emitting layer structure. Furthermore, a red-emitting Os(II) complex and 5 were used to fabricate warm-white OLEDs to achieve peak external quantum efficiency, luminance efficiency, and power efficiency values as high as 12.7%, 22.5 cd/A, and 22.1 lm/W, respectively.
Treatment of [IrCl3(tht)3], where tht = tetrahydrothiophene, with two equiv. of phenyl diphenylphosphinite (pdpitH) gave [Ir(pdpitH)(pdpit)(tht)Cl2] (1), which on further reaction with 3-t-butyl-5-(2-pyridyl)-1,2,4-triazole (bptzH) and NaOAc using a one-pot reaction afforded [Ir(pdpit)2(bptz)] (2). In sharp contrast, the reaction of [IrCl3(tht)3], pdpitH, and bptzH in the presence of a stronger base, Na2CO3, afforded a phenyl phenylphosphonite (pppo)-containing Ir(III) complex [Ir(pdpit)(pppo)(bptz)] (3) that reveals a strong PO-H-N inter-ligand hydrogen bond (H-bond), as evidenced by the single crystal X-ray structural analysis. For confirmation, addition of diazomethane to a diethylether solution of 3 led to the isolation of two methylated Ir(III) isomeric complexes, i.e. [Ir(pdpit)(pppoMe)(bptz)] (4) and [Ir(pdpit)(pppo)(bptzMe)] (5), possessing either a PO-Me or N-Me bonding fragment, respectively. The absorption spectrum of 3 in CH2Cl2 resembles that of 4, implying the dominant PO-H character in solution. Despite the prevailing PO-H character both in the solid crystal and in solution, its corresponding emission resembles that of 5, leading us to propose a mechanism incorporating the excited-state inter-ligand proton transfer (ESILPT) from PO-H to N-H isomeric form via the pre-existing PO···H···N hydrogen bond. The thermodynamics of proton transfer tautomerism are discussed on the basis of absorption/emission spectroscopy in combination with computational approaches; additional support is given by the relationship between emission pattern versus the position of protons and methyl substituents. The results demonstrate for the first time a paradigm of excited-state proton transfer for the transition metal complexes in the triplet manifold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.