Nerve growth factor (NGF) gene therapy has been used in clinical trials of Alzheimer’s disease. Understanding the underlying mechanisms of how NGF influences memory may help develop new strategies for treatment. Both NGF and the cholinergic system play important roles in learning and memory. NGF is essential for maintaining cholinergic innervation of the hippocampus, but it is unclear whether the supportive effect of NGF on learning and memory is specifically dependent upon intact hippocampal cholinergic innervation. Here we characterize the behavior and hippocampal measurements of volume, neurogenesis, long-term potentiation, and cholinergic innervation, in brain-specific Ngf-deficient mice. Our results show that knockout mice exhibit increased anxiety, impaired spatial learning and memory, decreased adult hippocampal volume, neurogenesis, short-term potentiation, and cholinergic innervation. Overexpression of Ngf in the hippocampus of Ngf gene knockout mice rescued spatial memory and partially restored cholinergic innervations, but not anxiety. Selective depletion of hippocampal cholinergic innervation resulted in impaired spatial memory. However, Ngf overexpression in the hippocampus failed to rescue spatial memory in mice with hippocampal-selective cholinergic fiber depletion. In conclusion, we demonstrate the impact of Ngf deficiency in the brain and provide evidence that the effect of NGF on spatial memory is reliant on intact cholinergic innervations in the hippocampus. These results suggest that adequate cholinergic targeting may be a critical requirement for successful use of NGF gene therapy of Alzheimer’s disease.
Adult neurogenesis is a striking example of neuroplasticity, which enables adaptive network remodelling in response to all forms of environmental stimulation in physiological and pathological contexts. Dysregulation or cessation of adult neurogenesis contributes to neuropathology negatively affecting brain functions and hampering regeneration of the nervous tissue while targeting adult neurogenesis may provide the basis for potential therapeutic interventions. Neural stem cells in the adult mammalian brain are at the core and the entry point of adult neurogenesis. By their origin and properties, these cells belong to astroglia, and are represented by stem radial astrocytes (RSA) which exhibit multipotent “stemness”. In the neurogenic niches, RSA interact with other cellular components, including protoplasmic astrocytes, which in turn regulate their neurogenic activity. In pathology, RSA become reactive, which affects their neurogenic capabilities, whereas reactive parenchymal astrocytes up‐regulate stem cell hallmarks and are able to generate progeny that remain within astrocyte lineage. What makes RSA special is their multipotency, represented by self‐renewing capacity capability to generate other cellular types as progeny. A broad understanding of the cellular features of RSA and parenchymal astrocytes provides an insight into the machinery that promotes/suppresses adult neurogenesis, clarifying principles of network remodelling. In this review, we discuss the cellular hallmarks, research tools, and models of RSA and astrocytes of the subventricular zone along the lateral ventricle and dentate gyrus of the hippocampus. We also discuss RSA in ageing, which has a great impact on the proliferative capacity of RSA, as well as the potential of RSA and astrocytes in therapeutic strategies aimed at cell replacement and regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.