Background: Pigs are unique reservoirs for virus ecology. Despite the increased use of improved biosecurity measures, pig viruses readily circulate in Chinese swine farms.
Objectives:The main objective of this study was to examine archived swine oral secretion samples with a panel of pan-species viral assays such that we might better describe the viral ecology of swine endemic viruses in Chinese farms. Methodology: Two hundred (n = 200) swine oral secretion samples, collected during 2015 and 2016 from healthy pigs on six swine farms in two provinces in China, were screened with molecular pan-species assays for coronaviruses (CoVs), adenoviruses (AdVs), enteroviruses (EVs), and paramyxoviruses (PMV). Samples were also screened for porcine circovirus (PCV) 3, porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV).Results: Among 200 swine oral secretion samples, 152 (76.0%) were found to have at least one viral detection. Thirty-four samples (17%) were positive for more than one virus, including 24 (70.5%) with dual detection and 10 (29.5%) with triple detection.Seventy-eight (39.0%) samples were positive for porcine AdVs, 22 (11.0%) were positive for porcine CoVs, 21 (10.5%) were positive for IAVs, 13 (6.5%) were positive for PCV, 7 (3.5%) were positive for PMV, six (3.0%) were positive for PRRSV and five (2.5%) were positive for porcine EV.
Conclusion:Our findings underscore the high prevalence of numerous viruses among production pigs in China and highlight the need for routine, periodic surveillance for novel virus emergence with the goal of protecting pigs.
Water is essential for life. However, water scarcity is becoming one of the most severe issues worldwide in terms of its potential impacts. There are diverse forms of water on earth and water harvesting from them is quite feasible to access more fresh water for drinking, sanitation and irrigation. In this review, we summarize the recent technologies of various water harvesters, based on different forms of water resources, aiming to improve the water harvesting systems. We mainly address three points: forming principles of different water circumstance, working mechanism of typical water harvesters, and the challenges and future research orientations. This systemic review on recent technologies in water harvesting provides insight into the sustainable water resources, water supply, and water collecting systems for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.