For testing the non-inferiority (or equivalence) of a generic drug to a standard drug, the odds ratio (OR) of patient response rates has been recommended to measure the relative treatment efficacy. On the basis of a random effects logistic regression model, we develop asymptotic test procedures for testing non-inferiority and equivalence with respect to the OR of patient response rates under a simple crossover design. We further derive exact test procedures, which are especially useful for the situations in which the number of patients in a crossover trial is small. We address sample size calculation for testing non-inferiority and equivalence based on the asymptotic test procedures proposed here. We also discuss estimation of the OR of patient response rates for both the treatment and period effects. Finally, we include two examples, one comparing two solution aerosols in treating asthma, and the other one studying two inhalation devices for asthmatics, to illustrate the use of the proposed test procedures and estimators.
When the frequency of occurrence for an event of interest follows a Poisson distribution, we develop asymptotic and exact procedures for testing non-equality, non-inferiority and equivalence, as well as asymptotic and exact interval estimators for the ratio of mean frequencies between two treatments under a simple crossover design. Using Monte Carlo simulations, we evaluate the performance of these test procedures and interval estimators in a variety of situations. We note that all asymptotic test procedures developed here can generally perform well with respect to Type I error and can be preferable to the exact test procedure with respect to power if the number of patients per group is moderate or large. We further find that in these cases the asymptotic interval estimator with the logarithmic transformation can be more precise than the exact interval estimator without sacrificing the accuracy with respect to the coverage probability. However, the exact test procedure and exact interval estimator can be of use when the number of patients per group is small. We use a double-blind randomized crossover trial comparing salmeterol with a placebo in exacerbations of asthma to illustrate the practical use of these estimators.
The odds ratio (OR) has been recommended elsewhere to measure the relative treatment efficacy in a randomized clinical trial (RCT), because it possesses a few desirable statistical properties. In practice, it is not uncommon to come across an RCT in which there are patients who do not comply with their assigned treatments and patients whose outcomes are missing. Under the compound exclusion restriction, latent ignorable and monotonicity assumptions, we derive the maximum likelihood estimator (MLE) of the OR and apply Monte Carlo simulation to compare its performance with those of the other two commonly used estimators for missing completely at random (MCAR) and for the intention-to-treat (ITT) analysis based on patients with known outcomes, respectively. We note that both estimators for MCAR and the ITT analysis may produce a misleading inference of the OR even when the relative treatment effect is equal. We further derive three asymptotic interval estimators for the OR, including the interval estimator using Wald's statistic, the interval estimator using the logarithmic transformation, and the interval estimator using an ad hoc procedure of combining the above two interval estimators. On the basis of a Monte Carlo simulation, we evaluate the finite-sample performance of these interval estimators in a variety of situations. Finally, we use the data taken from a randomized encouragement design studying the effect of flu shots on the flu-related hospitalization rate to illustrate the use of the MLE and the asymptotic interval estimators for the OR developed�here.odds ratio, noncompliance, missing outcomes, interval estimators, ITT analysis,
When testing the noninferiority of an experimental treatment to a standard (or control) treatment in a randomized clinical trial (RCT), we may come across the outcomes of patient response on an ordinal scale. We focus our discussion on testing noninferiority in ordinal data for an RCT under the parallel groups design. We develop simple test procedures based on the generalized odds ratio (GOR). We note that these test procedures not only can account for the information on the order of ordinal responses without assuming any specific parametric structural model, but also can be independent of any arbitrarily subjective scoring system. We further develop sample size determination based on the test procedure using the GOR. We apply Monte Carlo simulation to evaluate the performance of these test procedures and the accuracy of sample size calculation formula proposed here in a variety of situations. Finally, we employ the data taken from a trial comparing once-daily gatifloxican with three-times-daily co-amoxiclav in the treatment of community-acquired pneumonia to illustrate the use of these test procedures and sample size calculation formula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.