Objective Pu-erh tea was presumed to have anti-hyperglycemic effects via inhibition on alpha-amylase and alpha-glucosidase. However, no integerated literatures were published to substantiate such presumption. Methods Current study adopted systemic review method to validate inhibitory effects on alpha amylase and alpha-glucosidase. Five English databases (PubMed, EBSCO, SCOPUS, Cochrane Library, Web of Science) and three Chinese ones (Airti Library, CNKI Library, and Google Scholar) were searched up to 22 March 2018 for eligible literatures, using keywords of Pu-erh, Pu’er, alpha-amylase or alpha-glucosidase. Results Six studies exploring inhibitory effects on alpha-glucosidase and seven on alpha-amylase were included for systemic review. Though results showed pu-erh tea has significant inhibitory effects on alpha-amylase and alpha-glucosidase, high heterogeneity was detected among studies included. Conclusions High heterogeneity may be due to complex alterations of chemicals under different degrees of fermentation. More future studies are required to further identify principal bioactive component(s) at work.
Citrate is a key intermediate of the tricarboxylic acid cycle and acts as an allosteric signal to regulate the production of cellular ATP. An elevated cytosolic citrate concentration inhibits growth in several types of human cancer cells; however, the underlying mechanism by which citrate induces the growth arrest of cancer cells remains unclear. The results of this study showed that treatment of human pharyngeal squamous carcinoma (PSC) cells with a growth-suppressive concentration of citrate caused cell cycle arrest at the G2/M phase. A coimmunoprecipitation study demonstrated that citrate-induced cell cycle arrest in the G2/M phase was associated with stabilizing the formation of cyclin B1–phospho (p)-cyclin-dependent kinase 1 (CDK1) (Thr 161) complexes. The citrate-induced increased levels of cyclin B1 and G2/M phase arrest were suppressed by the caspase-3 inhibitor Ac-DEVD-CMK and caspase-3 cleavage of mutant p21 (D112N). Ectopic expression of the constitutively active form of protein kinase B (Akt1) could overcome the induction of p21 cleavage, cyclin B1–p-CDK1 (Thr 161) complexes, and G2/M phase arrest by citrate. p85α–phosphatase and tensin homolog deleted from chromosome 10 (PTEN) complex-mediated inactivation of Akt was required for citrate-induced G2/M phase cell cycle arrest because PTEN short hairpin RNA or a PTEN inhibitor (SF1670) blocked the suppression of Akt Ser 473 phosphorylation and the induction of cyclin B1–p-CDK1 (Thr 161) complexes and G2/M phase arrest by citrate. In conclusion, citrate induces G2/M phase arrest in PSC cells by inducing the formation of p85α–PTEN complexes to attenuate Akt-mediated signaling, thereby causing the formation of cyclin B1–p-CDK1 (Thr 161) complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.