A general and stereospecific homologation strategy for the synthesis of heptopyranosides is reported. The strategy employs the Wittig olefination and proline-catalyzed α-aminoxylation to achieve one carbon elongation and stereoselective hydroxylation at the C6 position, respectively. The L-glycero- and D-glycero-heptopyranosides can be obtained with nearly perfect stereoselectivity. Further study reveals the difference in the chemical shift of the C6 proton of L/D-glycero-heptopyranosyl diastereomers, which is found to be useful for assignment of the configuration of heptopyranosides.
We report a one-pot glycosylation strategy for achieving rapid syntheses of heptose (Hep)-containing oligosaccharides. The reported procedure was designed to incorporate an in situ phosphorylation step into an orthogonal one-pot glycosylation. Hep-containing oligosaccharides were assembled directly from building blocks with minimal effort expended on manipulation of protecting and aglycone leaving groups. The utility of our one-pot procedure was illustrated by synthesizing partial core oligosaccharide structure present in the lipopolysaccharide of Ralstonia solanacearum.
A concise synthesis of single components of C2 sulfated oligomannans including trimers, tetramers, and pentamers is reported. The synthesis features the application of the DMF-modulation method for the participatory thiomannoside donors in 1,2-transα-glycosidic bond formation. The obtained oligomannans were fully characterized using (1)H, (13)C, COSY, and HSQC NMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.