BackgroundAlthough many risk models have been tested in patients who undergo extracorporeal membrane oxygenation, few have been assessed for patients who received veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support in the emergency department (ED). This study aimed to successfully predict outcomes of patients with cardiac or noncardiac failure who received VA-ECMO in the ED within 24 hours of arrival at the ED.MethodThis retrospective, observational cohort study included 154 patients, who were classified as cardiac (n = 127) and noncardiac (n = 27) patients and received VA-ECMO within 24 hours after arrival at the China Medical University Hospital ED in Taiwan between January 2009 and September 2014. We recorded mechanical ventilation settings, arterial blood gases, laboratory parameters including plasma lactate level, requirement of catecholamines, and risk scores at time of ECMO initiation. ECMO and mechanical ventilation support duration, length of stay in the hospital, and 90-day mortality data were also examined.ResultsThe overall mortality rate was 64.9 %. We used “survival after veno-arterial ECMO (SAVE)” scores to assess survival prediction in survival and nonsurvival groups, which was statistically different (–3.2 vs. –8.3, p <0.001). According to multivariate Cox proportional regression of survival, lactate (hazard ratio [HR] = 1.01, 95 % confidence interval [CI], 1.01–1.01, p <0.001) and SAVE score (HR = 0.92, [95 % CI, 0.88–0.96], p = 0.001) were independent predictors of outcome. Excellent discrimination (area under curve (AUC) = 0.843) was observed when lactate and SAVE score were combined, which we referred to as “the modified SAVE score.”ConclusionsModified SAVE scores improved outcome prediction for patients who underwent urgent VA-ECMO in the ED.
Gene duplication is an important evolutionary mechanism and no eukaryote has more duplicated gene families than the parasitic protist Trichomonas vaginalis. Iron is an essential nutrient for Trichomonas and plays a pivotal role in the establishment of infection, proliferation, and virulence. To gain insight into the role of iron in T. vaginalis gene expression and genome evolution, we screened iron-regulated genes using an oligonucleotide microarray for T. vaginalis and by comparative EST (expressed sequence tag) sequencing of cDNA libraries derived from trichomonads cultivated under iron-rich (+Fe) and iron-restricted (−Fe) conditions. Among 19,000 ESTs from both libraries, we identified 336 iron-regulated genes, of which 165 were upregulated under +Fe conditions and 171 under −Fe conditions. The microarray analysis revealed that 195 of 4,950 unique genes were differentially expressed. Of these, 117 genes were upregulated under +Fe conditions and 78 were upregulated under −Fe conditions. The results of both methods were congruent concerning the regulatory trends and the representation of gene categories. Under +Fe conditions, the expression of proteins involved in carbohydrate metabolism, particularly in the energy metabolism of hydrogenosomes, and in methionine catabolism was increased. The iron–sulfur cluster assembly machinery and certain cysteine proteases are of particular importance among the proteins upregulated under −Fe conditions. A unique feature of the T. vaginalis genome is the retention during evolution of multiple paralogous copies for a majority of all genes. Although the origins and reasons for this gene expansion remain unclear, the retention of multiple gene copies could provide an opportunity to evolve differential expression during growth in variable environmental conditions. For genes whose expression was affected by iron, we found that iron influenced the expression of only some of the paralogous copies, whereas the expression of the other paralogs was iron independent. This finding indicates a very stringent regulation of the differentially expressed paralogous genes in response to changes in the availability of exogenous nutrients and provides insight into the evolutionary rationale underlying massive paralog retention in the Trichomonas genome.
ObjectivesWe aimed to explore the relationship between the time interval from diagnosis to treatment and survival of oral cavity squamous cell carcinoma patients.Materials and methodsA population-based study was conducted between 2004 and 2010. Claims data of oral squamous cell carcinoma patients were retrieved from the Taiwan Cancer Registry Database. Secondary data were obtained from Taiwan’s National Health Insurance Research Database.ResultsA total of 21,263 patients were included in the final analysis. The majority of the patients received treatment within 30 days of diagnosis (n = 18,193, 85.5%), while 572 patients (2.7%) underwent treatment after 120 days. The patients who were treated after 120 days had a higher risk of death when compared to those treated within 30 days (Hazard ratio: 1.32, 95% Confidence intervals: 1.19 to 1.47).ConclusionA longer time interval from diagnosis to treatment was found to be associated with a poorer prognosis among patients suffering from oral squamous cell carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.