Glucocorticoid (GC)-induced avascular osteonecrosis of femoral head (AOFH) is a devastating complication, and no cures are currently available for it. Previous studies have demonstrated that implantation of bone marrow mesenchymal stem cells (BMMSCs) may prevent the progression of pre-collapse AOFH. Based on previous observations, we hypothesized that GCs induce AOFH via the COX-2 (cyclooxygenase-2)–PGE-2 (prostaglandin E2)–HIF-1α (hypoxia-inducible factor-1α) axis, and that modification of BMMSCs may improve the efficacy of their implantation. BMMSCs isolated from wild-type (WT) mice were treated with dexamethasone (Dex) and the results showed that Dex repressed the expression of COX-2. Femoral head samples harvested from both WT and COX-2 knock-out (COX-2−/−) mice were subjected to micro–computed tomography and histological examinations. Compared with their WT littermates, COX-2−/− mice had larger trabecular separations, diminished microvasculature, and reduced HIF-1α expression in their femoral heads. In vitro angiogenesis assays with tube formation and fetal metatarsal sprouting demonstrated that Dex repressed angiogenesis and PGE-2 antagonized its effects. An AOFH model was successfully established in C57BL/6J mice. In vitro experiment showed that BMMSCs infected with Lentivirus encoding HIF-1α (Lenti-HIF-1α) resulted in a robust increase in the production of HIF-1α protein. Implantation of BMMSCs overexpressing HIF-1α into femoral heads of AOFH mice significantly reduced osteonecrotic areas and enhanced bone repair, thus largely preserving the structural integrity of femoral heads. Our studies provide strong rationales for early intervention with core decompression and implantation of modified BMMSCs for GC-induced AOFH, which may spare patients from expensive and difficult surgical procedures.
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease characterized by dryness of the eyes and mouth. The histological feature is mononuclear cell infiltration in exocrine glands, primarily salivary and lachrymal glands. As the disease progresses, some other tissues and organs may be involved and extraglandular manifestations ensue. The major current treatments are palliative and empirical, and in most cases the outcomes are not satisfactory. Emerging data indicate a critical role of lymphocytes in its development and progression. While pioneering work targeting B cells has demonstrated some encouraging results, more trials are warranted to validate the safety and efficacy. In addition, modulation of T cell function with abatacept ameliorates the severity of pSS. Furthermore, clinical trials to inhibit important cytokines involved in its formation have been carried out. In this article, we summarize and compare current biological therapies in order to find new and effective treatments for pSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.