A brain-computer interface (BCI) system using electroencephalography (EEG) signals provides a convenient means of communication between the human brain and a computer. Motor imagery (MI), in which motor actions are mentally rehearsed without engaging in actual physical execution, has been widely used as a major BCI approach. One robust algorithm that can successfully cope with the individual differences in MI-related rhythmic patterns is to create diverse ensemble classifiers using the sub-band common spatial pattern (SBCSP) method. To aggregate outputs of ensemble members, this study uses fuzzy integral with particle swarm optimization (PSO), which can regulate subject-specific parameters for the assignment of optimal confidence levels for classifiers. The proposed system combining SBCSP, fuzzy integral, and PSO exhibits robust performance for off-line single-trial classification of MI and real-time control of a robotic arm using MI. The main contribution of this paper is that it represents the first attempt to utilize fuzzy fusion technique to attack the individual differences problem of MI applications in real-world noisy environment. The results of this study demonstrate the practical feasibility of implementing the proposed method for real-world applications.
In this paper, a Takagi-Sugeno-Kang (TSK) type collaborative fuzzy rule based system is proposed with the help of knowledge learning ability of collaborative fuzzy clustering (CFC). The proposed method split a huge dataset into several small datasets and applying collaborative mechanism to interact each other and this process could be helpful to solve the big data issue. The proposed method applies the collective knowledge of CFC as input variables and the consequent part is a linear combination of the input variables. Through the intensive experimental tests on prediction problem, the performance of the proposed method is as higher as other methods. The proposed method only uses one half information of given dataset for training process and provide an accurate modeling platform while other methods use whole information of given dataset for training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.