In this paper we introduce a general theory for nonlinear sufficient dimension reduction, and explore its ramifications and scope. This theory subsumes recent work employing reproducing kernel Hilbert spaces, and reveals many parallels between linear and nonlinear sufficient dimension reduction. Using these parallels we analyze the properties of existing methods and develop new ones. We begin by characterizing dimension reduction at the general level of σ-fields and proceed to that of classes of functions, leading to the notions of sufficient, complete and central dimension reduction classes. We show that, when it exists, the complete and sufficient class coincides with the central class, and can be unbiasedly and exhaustively estimated by a generalized sliced inverse regression estimator (GSIR). When completeness does not hold, this estimator captures only part of the central class. However, in these cases we show that a generalized sliced average variance estimator (GSAVE) can capture a larger portion of the class. Both estimators require no numerical optimization because they can be computed by spectral decomposition of linear operators. Finally, we compare our estimators with existing methods by simulation and on actual data sets.
We propose a non-parametric variable selection method which does not rely on any regression model or predictor distribution. The method is based on a new statistical relationship, called additive conditional independence, that has been introduced recently for graphical models. Unlike most existing variable selection methods, which target the mean of the response, the method proposed targets a set of attributes of the response, such as its mean, variance or entire distribution. In addition, the additive nature of this approach offers non-parametric flexibility without employing multi-dimensional kernels. As a result it retains high accuracy for high dimensional predictors. We establish estimation consistency, convergence rate and variable selection consistency of the method proposed. Through simulation comparisons we demonstrate that the method proposed performs better than existing methods when the predictor affects several attributes of the response, and it performs competently in the classical setting where the predictors affect the mean only. We apply the new method to a data set concerning how gene expression levels affect the weight of mice.
We introduce an additive partial correlation operator as an extension of partial correlation to the nonlinear setting, and use it to develop a new estimator for nonparametric graphical models. Our graphical models are based on additive conditional independence, a statistical relation that captures the spirit of conditional independence without having to resort to high-dimensional kernels for its estimation. The additive partial correlation operator completely characterizes additive conditional independence, and has the additional advantage of putting marginal variation on appropriate scales when evaluating interdependence, which leads to more accurate statistical inference. We establish the consistency of the proposed estimator. Through simulation experiments and analysis of the DREAM4 Challenge dataset, we demonstrate that our method performs better than existing methods in cases where the Gaussian or copula Gaussian assumption does not hold, and that a more appropriate scaling for our method further enhances its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.