Levels of Cu, Fe, Mn, Zn, Ni and Pb at Qujiang, both in the inner and the outer bark, were statistically higher than those at Dinghushan. Higher concentrations of Pb, Fe, Zn and Cu may come from the stem-flow of elements leached from the canopy, soil splash on the 1.5 m height and sorption of metals in the mosses and lichens growing on the bark, which were direct or indirect results from the atmospheric deposition. Levels of heavy metals in the outer barks were associated well with the metal concentrations in the soil, reflecting the close relationships between the metal atmospheric deposition and their accumulation in the outer bark of Masson pine. The significant (p<0.01) correlations of FeCu, Fe-Cr, Fe-Pb, Fe-Ni, Pb-Ni, and Pb-Zn in the outer barks at Qujiang again suggested a common source for the metals. The correlation only occurred between Pb and Ni, Cd and Co in the outer barks at Dinghushan, which suggested that those metals must possibly have other uncommon sources. Conclusions. Atmospheric deposition of the selected metals was great at Qujiang, based on the levels in the bark of Pinus massoniana and on the concentrations in the soils beneath the trees compared with that at Dinghushan. Bark of Pinus massoniana, especially the outer bark, was an indicator of metal loading at least at the time of sampling. Recommendations and Perspectives. The results from this study and the techniques employed constituted a new contribution to the development of biogeochemical methods for environmental monitoring particularly in areas with high frequency of pollution in China. The method would be of value for follow up studies aimed at the assessment of industrial pollution in other areas similar with the Pearl River Delta. AbstractGoal, Scope and Background. Rapid urbanization and the expansion of industrial activities in the past several decades have led to large increases in emissions of pollutants in the Pearl River Delta of south China. Recent reports have suggested that industrial emission is a major factor contributing to the damages in current natural ecosystem in the Delta area. Tree barks have been used successfully to monitor the levels of atmospheric metal deposition in many areas, but rarely in China. This study aimed at determining whether atmospheric heavy metal deposition from a PbZn smeltery at Qujiang, Guangdong province, could be accurately reflected both in the inner bark and the outer bark of Masson pine (Pinus massoniana L.). The impact of the emission from smeltery on the soils beneath the trees and the relationships of the concentrations between the soils and the barks were also analyzed. Methods.Barks around the bole of Pinus massoniana from a pine forest near a Pb-Zn smeltery at Qujiang and a reference forest at Dinghushan natural reserve were sampled with a stainless knife at an average height of 1.5 m above the ground. Mosses and lichens on the surface barks were cleaned prior to sampling. The samples were carefully divided into the inner bark (living part) and the outer bark (dead part) in ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.