For the purpose of improving the efficiency of traffic signal control for isolate intersection under oversaturated conditions, a multi-objective optimization algorithm for traffic signal control is proposed. Throughput maximum and average queue ratio minimum are selected as the optimization objectives of the traffic signal control under oversaturated condition. A simulation environment using VISSIM SCAPI was utilized to evaluate the convergence and the optimization results under various settings and traffic conditions. It is written by C++/CRL to connect the simulation software VISSIM and the proposed algorithm. The simulation results indicated that the signal timing plan generated by the proposed algorithm has good efficiency in managing the traffic flow at oversaturated intersection than the commonly utilized signal timing optimization software Synchro. The update frequency applied in the simulation environment was 120 s, and it can meet the requirements of signal timing plan update in real filed. Thus, the proposed algorithm has the capability of searching Pareto front of the multi-objective problem domain under both normal condition and over-saturated condition.
Gong (2019) Codelivery of DOX and siRNA by folate-biotinquaternized starch nanoparticles for promoting synergistic suppression of human lung cancer cells,
The inconsistencies of passenger flow volume between stations’ peak hours and cities’ peak hours have emerged as a phenomenon in various cities worldwide. Passenger flow forecasting at planning stages can only predict passenger flow volume in city peak hours and for the whole day. For some stations, the highest flow does not occur in the city peak hours, and station scale design is often too small. This study locates the formation mechanism of station peak in which the temporal distribution of the station is the superposition of different temporal distributions of the purpose determined by land-use attributes. Data from 63 stations in Xi’an, China, were then used to present an enlargement coefficient which can change the boarding and alighting volume in city peak hours to a station’s own peak hours. This was done by analyzing the inconsistencies of passenger flow volume between the station’s peak hours and the city’s peak hours. Morning peak deviation coefficient (PDC) and evening PDC were selected as datasets, and stations were classified accordingly. Statistics of land usage for every type of station showed that when the stations were surrounded by developed land, the relationship between the PDC and the commuter travel land proportion was to some extent orderly. More than 90.00% of stations with a proportion of commuter travel land that was more than 0.50 had PDCs under 1.10. All stations with a proportion of commuter travel land that was less than 0.50 had morning PDCs over 1.10. Finally, data from 52 stations in Chongqing, China were used to verify the findings, with the results in Chongqing predominantly corresponding to those in Xi’an.
In this paper, a new oral insulin formulation, insulin-loaded carboxymethyl-b-cyclodextrin-grafted chitosan nanoparticles (insulin/CMCD-g-CS NPs), was fabricated by ionic crosslinking technique. The therapeutic efficacy of new formulation was investigated in detail. Firstly, the CMCD-g-CS was synthesized by EDC-mediated esterification reaction. The prepared CMCD-g-CS exhibited favourable loading capacity and encapsulation efficiency of drug. The release experiment in vitro showed that the nanocarrier could efficiently protect encapsulated insulin at simulated gastric environment and release drug in the simulated colonic fluid. The insulin/CMCD-g-CS NPs effectively promoted drug internalization into Caco-2 cells and could reversibly open the tight junction between cells. The oral administration of insulin/CMCD-g-CS NPs could lastingly decrease blood sugar level in diabetic mice. The liver function study verified that the insulin/CMCD-g-CS NPs had not obvious toxicity to experimental mice. Therefore, the CMCD-g-CS could be an effective and safe oral insulin delivery carrier for future clinical application.A new biocompatible polysaccharide nanoparticle was fabricated as oral insulin delivery carrier for improving diabetic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.