A nonsingular fast terminal sliding mode guidance law with an impact angle constraint is proposed to solve the problem of missile guidance accuracy and impact angle constraint for maneuvering targets. Aiming at the singularity problem of the terminal sliding mode, a fast terminal sliding mode surface with finite-time convergence and impact angle constraint is designed based on fixed-time convergence and piecewise sliding mode theory. To weaken chattering and suppress interference, a second-order sliding mode supertwisting algorithm is improved. By designing the parameter adaptive law, an adaptive smooth supertwisting algorithm is designed. This algorithm can effectively weaken chattering without knowing the upper bound information of interference, and it converges faster. Based on the proposed adaptive supertwisting algorithm and the sliding mode surface, a guidance law with the impact angle constraint is designed. The global finite-time convergence of the guidance law is proved by constructing the Lyapunov function. The simulation results verify the effectiveness of the proposed guidance law, and compared with the existing terminal sliding mode guidance laws, the proposed guidance law has higher guidance precision and angle constraint accuracy.
Aiming at the problem of impact angle constraint and input saturation, an integrated guidance and control (IGC) algorithm with impact angle constraint and input saturation is proposed. A three-channel independent design model of missile IGC with impact angle constraint is established, and an extended state observer with fast finite-time convergence is designed to estimate and compensate model errors and coupling relationship between channels. Based on the nonsingular terminal sliding mode control and backstepping control, the IGC three-channel independent design is completed. Nussbaum function and an auxiliary system are introduced to deal with the input saturation. The Lyapunov function is constructed to prove the finite-time convergence of the IGC algorithm. The missile six-degree-of-freedom simulation results show the effectiveness and superiority of the IGC algorithm.
Aiming at the requirement that some missiles need to meet certain impact angles when attacking targets, we consider the secondorder dynamic characteristics of autopilot, thereby proposing a second-order sliding mode guidance law with impact angle constraint. Firstly, based on the terminal sliding mode control, we design a fast nonsingular terminal sliding mode guidance law with impact angle constraint. Based on the second-order sliding mode control, a second-order sliding mode guidance law with impact angle constraint is proposed. We have proved its finite time convergence characteristics and presented the specific convergence time expression. Subsequently, the dynamic characteristics of the autopilot are approximated to the second-order link. Combined with the dynamic surface control theory, we proposed a second-order sliding mode guidance law considering the second-order dynamic characteristics of the autopilot and proved its finite-time convergence characteristics. Finally, the effectiveness and superiority of the proposed guidance law are verified by comparative simulation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.