Sweet potato is one of the most economically important crops for addressing global food security and climate change issues, especially under conditions of extensive agriculture, such as those found in developing countries. However, osmotic stress negatively impacts the agronomic and economic productivity of sweet potato cultivation by inducing several morphological, physiological, and biochemical changes. Plants employ many signaling pathways to respond to water stress by modifying their growth patterns, activating antioxidants, accumulating suitable solutes and chaperones, and making stress proteins. These physiological, metabolic, and genetic modifications can be employed as the best indicators for choosing drought-tolerant genotypes. The main objective of sweet potato breeding in many regions of the world, especially those affected by drought, is to obtain varieties that combine drought tolerance with high yields. In this regard, the study of the physiological and biochemical features of certain varieties is important for the implementation of drought resistance measures. Adapted genotypes can be selected and improved for particular growing conditions by using suitable tools and drought tolerance-related selection criteria. By regulating genetics in this way, the creation of drought-resistant varieties may become cost-effective for smallholder farmers. This review focuses on the drought tolerance mechanisms of sweet potato, the effects of drought stress on its productivity, its crop management strategies for drought mitigation, traditional and molecular sweet potato breeding methods for drought tolerance, and the use of biotechnological methods to increase the tolerance of sweet potato to drought.
Biotechnological methods are becoming an integral part of biological research. This review presents some of the most significant scientific results of Kazakhstan biologists in the field of plant biotechnology over the past 10 years. One of the recent important areas of application of biotechnological methods is the conservation and study of plant genetic resources and bioremediation. Studies on the flora lead to the identification of new sources of previously unknown biologically active materials, especially among wild plants growing in Kazakhstan. In addition, various biotechnological approaches are used to increase the efficiency of breeding practices for the production of new crop varieties.
Doubled haploids (DH) were obtained from two interspecific hybrids between Brassica napus and Brassica rapa. Seeds of doubled haploid plants differed in colour and size. The hybridity of the obtained doubled haploid is shown using genomic in situ hybridization (GISH) analysis. Evaluation of drought tolerance during seed germination on PEG-6000 showed the advantage of doubled haploid plants of interspecific hybrids over the parent cultivars. The oil from seeds of doubled haploid plants showed good nutritional value.
In Kazakhstan, a large pool of fruit trees is grown, one of which is the pomegranate (Punica granatum L.). The most significant limiting factor of pomegranate cultivation in Kazakhstan is the frosty winter, as well as low temperatures in spring and autumn. In order to obtain mutants resistant to low positive temperatures, chemical mutagenesis was used, with ethyl methanesulfonate (EMS) as the mutagen. Callus was treated with mutagen in vitro culture. In the Akdona cultivar, the survival rate of callus was 25.45% at the concentration of 3 µM of EMS mutagen, 31.67% at the concentration of 6 µM, and 24.35% at 9 µM. Plant regeneration was induced from mutagen-treated calluses. The resulting plants were exposed to low positive temperatures (4°C, for 30 days). After exposure to cold, the maximum survival rate of mutant plants of the Akdona cultivar was 58%, and the minimum survival rate was 3% for plants of the Pg1 line. The resulting mutant pomegranate plants will be used for breeding for cold resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.