Long non-coding RNAs (LncRNAs) have been recently regarded as systemic regulators in multiple biologic processes including tumorigenesis. In this study, we observed the expression of lncRNA lnc-sox5 was significantly increased in colorectal cancer (CRC). Despite the CRC cell growth, cell cycle and cell apoptosis was not affected by lnc-sox5 knock-down, lnc-sox5 knock-down suppressed CRC cell migration and invasion. In addition, xenograft animal model suggested that lnc-sox5 knock-down significantly suppressed the CRC tumorigenesis. Our results also showed that the expression of indoleamine 2,3-dioxygenase 1 (IDO1) was significantly reduced by lnc-sox5 knock-down and therefore modulated the infiltration and cytotoxicity of CD3CD8T cells. Taken together, these results suggested that lnc-sox5 unbalances tumor microenvironment to regulate colorectal cancer progression.
Dysfunctional vascular smooth muscle (VSM) plays a vital role in the process of atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Alpha-lipoic acid (ALA) can prevent the altered VSM induced by diabetes. However, the precise mechanism underlying the beneficial effect of ALA is not well understood. This study aimed to determine whether ALA ameliorates VSM function by elevating hydrogen sulfide (HS) level in diabetes and whether this effect is associated with regulation of autophagy of VSM cells (VSMCs). We found decreased serum HS levels in Chinese patients and rats with type 2 diabetes mellitus (T2DM). ALA treatment could increase HS level, which reduced the autophagy-related index and activation of the 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, thereby protecting vascular function in rats with T2DM. Propargylglycine (PPG), a cystathionine-γ-lyase inhibitor, could weaken the ALA effect. In cultured VSMCs, high glucose level also reduced HS level, upregulated the autophagy-related index and activated the AMPK/mTOR pathway, which were reversed by concomitant application of sodium hydrosulfide (NaHS, an HS donor) or ALA. The protective effect of NaHS or ALA was attenuated by rapamycin (an autophagy activator), 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (an AMPK activator) or PPG. In contrast, Compound C (an AMPK inhibitor) enhanced the effect of ALA or NaHS. ALA may have a protective effect on VSMCs in T2DM by elevating HS level and downregulating autophagy via the AMPK/mTOR pathway. This study provides a new target for addressing diabetic macroangiopathy.
Downregulation of MALAT1 may promote apoptosis and suppress proliferation, migration and invasion of human NSCLC A549 cells by inhibiting autophagy, thereby suppressing the development of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.