It is becoming increasingly important for applications to protect sensitive data. With current techniques, the programmer bears the burden of ensuring that the application's behavior adheres to policies about where sensitive values may flow. Unfortunately, privacy policies are difficult to manage because their global nature requires coordinated reasoning and enforcement. To address this problem, we describe a programming model that makes the system responsible for ensuring adherence to privacy policies. The programming model has two components: 1) core programs describing functionality independent of privacy concerns and 2) declarative, decentralized policies controlling how sensitive values are disclosed. Each sensitive value encapsulates multiple views; policies describe which views are allowed based on the output context. The system is responsible for automatically ensuring that outputs are consistent with the policies. We have implemented this programming model in a new functional constraint language named Jeeves. In Jeeves, sensitive values are introduced as symbolic variables and policies correspond to constraints that are resolved at output channels. We have implemented Jeeves as a Scala library using an SMT solver as a model finder. In this paper we describe the dynamic and static semantics of Jeeves and the properties about policy enforcement that the semantics guarantees. We also describe our experience implementing a conference management system and a social network.
It is becoming increasingly important for applications to protect sensitive data. With current techniques, the programmer bears the burden of ensuring that the application's behavior adheres to policies about where sensitive values may flow. Unfortunately, privacy policies are difficult to manage because their global nature requires coordinated reasoning and enforcement. To address this problem, we describe a programming model that makes the system responsible for ensuring adherence to privacy policies. The programming model has two components: 1) core programs describing functionality independent of privacy concerns and 2) declarative, decentralized policies controlling how sensitive values are disclosed. Each sensitive value encapsulates multiple views; policies describe which views are allowed based on the output context. The system is responsible for automatically ensuring that outputs are consistent with the policies. We have implemented this programming model in a new functional constraint language named Jeeves. In Jeeves, sensitive values are introduced as symbolic variables and policies correspond to constraints that are resolved at output channels. We have implemented Jeeves as a Scala library using an SMT solver as a model finder. In this paper we describe the dynamic and static semantics of Jeeves and the properties about policy enforcement that the semantics guarantees. We also describe our experience implementing a conference management system and a social network.
We present a unified environment for running declarative specifications in the context of an imperative object-oriented programming language. Specifications are Alloy-like, written in first-order relational logic with transitive closure, and the imperative language is Java. By being able to mix imperative code with executable declarative specifications, the user can easily express constraint problems in place, i.e., in terms of the existing data structures and objects on the heap. After a solution is found, the heap is updated to reflect the solution, so the user can continue to manipulate the program heap in the usual imperative way. We show that this approach is not only convenient, but, for certain problems can also outperform a standard imperative implementation. We also present an optimization technique that allowed us to run our tool on heaps with almost 2000 objects.
Text processing, tedious and error-prone even for programmers, remains one of the most alluring targets of Programming by Example. An examination of real-world text processing tasks found on help forums reveals that many such tasks, beyond simple string manipulation, involve latent hierarchical structures.We present STEPS, a programming system for processing structured and semi-structured text by example. STEPS users create and manipulate hierarchical structure by example. In a between-subject user study on fourteen computer scientists, STEPS compares favorably to traditional programming.
Abstract. Logics that involve collections (sets, multisets), and cardinality constraints are useful for reasoning about unbounded data structures and concurrent processes. To make such logics more useful in verification this paper extends them with the ability to compute direct and inverse relation and function images. We establish decidability and complexity bounds for the extended logics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.