The incorporation of nanoparticles into soft matrices opens a broad spectrum of novel property combinations. However, one of the major challenges for these systems remains the compatibilization of particles with the surrounding matrix by proper surface functionalization. For silicon-based systems or liquid crystalline phases, polydimethylsiloxane (PDMS) brushes at the surface of particles increase the stability against particle agglomeration in such systems. Here, we report a novel approach for the functionalization of particles with a polysiloxane brush by surface-initiated ring-opening polymerization of a cyclosiloxane. For this purpose, surface hydroxy groups of silica and silica-coated hematite particles are used as initiators in combination with phosphazene bases as catalysts. The ring–chain equilibrium of a model-based solution polymerization is investigated in detail to find the appropriate reaction parameters. The corresponding molar masses are determined and compared by 1H-NMR and SEC measurements to confirm the underlying mechanism. In the resulting hybrid nanostructures, a covalently bound PDMS fraction is achieved up to 47 mass %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.