In this paper, a simple process to fabricate ordered Au nanodot arrays up to 520 nm in diameter that respond to infrared light is developed, and the feasibility of its application to infrared plasmonic sensors is shown. The developed process utilizes thermal dewetting to agglomerate a coated gold film into nanodots. It was difficult to produce large nanodots that responded to infrared light owing to dot separation. In this paper, therefore, the mechanism of dot agglomeration by thermal dewetting is studied via an experiment and theoretical model, and conditions to form single nanodots are clarified. Furthermore, Au nanodot arrays of 100 nm to 520 nm in diameter were fabricated by this process, and their absorption spectra were analyzed. In addition, an analysis of the change in the peak wavelength against the refractive index indicates the possibility of further improvement of the sensitivity of the infrared plasmon sensors.
The electrical conductivity (EC) of minerals found on Earth and throughout the solar system is a fundamental transport property that is used to understand various dynamical phenomena in planetary interiors. High-pressure and high-temperature ( P–T) EC measurements are also an important tool for observing phase transitions. Impedance measurements can accurately measure the EC of a nonmetallic sample. In previous measurements under static conditions using a laser-heated diamond-anvil cell (LHDAC), only direct current resistance is measured, but this method overestimates the bulk sample resistance. Moreover, the previous methodology could only be applied to nontransparent samples in an LHDAC using infrared lasers, limiting the range of measurable composition. To the best of our knowledge, no in situ high- P–T EC measurements of transparent materials have been reported using LHDAC techniques. We developed a novel impedance measurement technique under high- P–T conditions in an LHDAC that applies to transparent samples. As a validation, we measured the EC of Mg0.9Fe0.1SiO3 bridgmanite up to 51 GPa and 2000 K and found that the results are consistent with those of previous studies. We also measured the EC values of sodium chloride to compare with those of previous studies, as well as those of cubic boron nitride and zirconia cement to quantify how well they insulate under high P–T conditions. This is the first report of the impedance and EC measurements of transparent minerals in an LHDAC, which allows the measurement of Fe-poor/-free materials, including the major constituents of the interiors of gas giants and icy planets, under extreme conditions.
In this study, high temperature thermal properties of hot pressing sintered TjB2 ceramics was investigated in order to determine the feasibility to the divertor plate of fusion materials. The thermal expansion coefficient was 8.2 X 106 1K in a range of room temperature to 1073 K. The thermal diffusivity and specific heat were measured by the laser flash method. The thermal diffusivity and specific heat increased with increasing temperature. The thermal conductivity was 57 to 75 WImK at temperatures from room temperature to 1273 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.