Özetçe-Çalışmada, Türkiye'de faaliyet gösteren bir banka için müşteri terk modeli geliştirilmiştir. Bankacılık sektöründe müşteri banka ilişkisinin süresi bir kontrata dayalı olmadığından, bu modeli bankacılık için geliştirmek diğer sektörlere oranla daha zorlu bir süreçtir. Model oluşturmak için öncelikle müşteri ham verileri kullanışlı ve anlamlı bir hale dönüştürülerek veri ambarına alınması çalışması yapılmıştır. Daha sonra hazırlanan bu veri kümesi üzerinde, veri madenciliği teknikleri kullanılarak bir terk tahmin modeli geliştirilmiştir. Geliştirilen modellerin tahminleme performansları doğruluk oranı, duyarlılık, belirginlik, kappa istatistiği ve AUROC ölçümleri kullanılarak değerlendirilmiştir. Anahtar Kelimeler -Müşteri terk tahmini, müşteriyi elde tutma, CRM, veri madenciliği, karar ağaçları, yapay sinir ağları, lojistik regresyon, rastgele ormanAbstract-This paper proposes a customer churn model for a private bank in Turkey. It is more challenging to put forth a model for banking sector as there are no contractual agreements between a customer and a bank regarding the duration of services. During the development of the model, we first converted the raw data into a usable and meaningful form. Later, using data mining techniques on our data, we have developed a "churn prediction model". Prediction performance is evaluated using accuracy, sensitivity, specificity, kappa statistic and area under the curve based measures.
Atrial fibrillation (AF) is diagnosed with the electrocardiogram, which is the gold standard in clinics. However, sufficient arrhythmia monitoring takes a long time, and many of the tests are made in only a few seconds, which can lead arrhythmia to be missed. Here, we propose a combined method to detect the effects of AF on atrial tissue. We characterize tissues obtained from patients with or without AF by scanning acoustic microscopy (SAM) and by Raman spectroscopy (RS) to construct a mechano-chemical profile. We classify the Raman spectral measurements of the tissue samples with an unsupervised clustering method, k-means and compare their chemical properties. Besides, we utilize scanning acoustic microscopy to compare and determine differences in acoustic impedance maps of the groups. We compared the clinical outcomes with our findings using a neural network classification for Raman measurements and ANOVA for SAM measurements. Consequently, we show that the stiffness profiles of the tissues, corresponding to the patients with chronic AF, without AF or who experienced postoperative AF, are in agreement with the lipid-collagen profiles obtained by the Raman spectral characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.