In this study, preconcentration conditions of trace amounts of copper ions were investigated with solid-phase extraction (SPE) method by synthesizing activated carbon-based ion-imprinted sorbent (Cu(II)-IAC) with a novel and selective approach. Flame atomic absorption spectrometry (FAAS) was used for the determination of metal ions concentrations. For the characterization of the sorbents, scanning electron microscopy, energy dispersive X-ray (SEM/EDX) analysis, and Fourier transform infrared spectroscopy (FTIR) were used. Optimum conditions for the SPE procedure, various parameters such as pH value, eluent type and concentration, sample volume, sample flow rate, adsorption capacity, and selectivity were studied. The adsorption isotherm was analyzed by Freundlich and Langmuir isotherm, and the maximum adsorption capacity was found to be 142.9 and 312.5 mg/g for activated carbon-based nonimprinted (Cu(II)-non-IAC) and Cu(II)-IAC sorbents, respectively from the Langmuir isotherm. Limit of determination (LOD) and limit of quantification (LOQ) values were found to be 0.038 and 0.113 μg/L, respectively for Cu(II)-IAC sorbent, and the results were compared with the literature. The accuracy and validity of the proposed method were evaluated by the determination of Cu(II) ions from tap water samples and certified reference materials (CRMs) (soft drinking water ERML-CA021e and NIST 1643e) analysis. Good and quantitative recoveries were obtained for the spiked analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.