Lojistik sektörü dünyada ve Türkiye'de giderek büyümekte ve sektörün potansiyeli zamanla daha iyi anlaşılmaktadır. Lojistik sektörünün gelişime oldukça açık olduğu, teknoloji ile ortaya çıkan yeniliklere ayak uydurmak zorunda olduğu bilinmektedir. İşletmeler bu yeniliklere ayak uydurarak, rekabette başarılı olmaya çalışmaktadır. Endüstri 4.0 özellikle lojistik gibi rekabetin ön planda olduğu sektörleri etkisi altına almıştır. Yapılan son araştırmalarda yapay zeka tekniklerinin kullanımında büyük oranda artış olduğu görülmektedir. Yapay zekanın lojistik sektöründe kullanılması sonucunda özellikle işleyiş ve dinamiklerde değişiklikler oluşmaya başlamıştır. Yapay zeka, insan zekasının fizyolojik ve nörolojik yapısını çeşitli teknolojiler yardımı ile modelleyerek makinelere aktarmaktadır. Yapay zeka ile birlikte ortaya çıkan sürücüsüz araçlar, depolama ve raflarda kullanılan robotlar, sistem içerisinde büyük verilerin rahatlıkla kullanılması gibi seçenekler lojistik sektöründeki hataların en aza indirgenmesini sağlamaktadır. Lojistik sektöründe yapay zeka kullanımı sayesinde işletmeler daha verimli işler ortaya koymaktadır. Yapılan bu çalışmada, lojistik sektöründe kullanılan yapay zeka ve makine öğrenmesi uygulamalarının geniş bir perspektif ile incelenmesi amaçlanmıştır. Çalışmada önce yapay zeka ve makine öğrenimi kavramları açıklanmış ardından endüstri ve lojistik kavramlarına değinilerek lojistikte kullanılan yapay zeka ve makine öğrenmesi uygulamalarına yer verilmiştir. Küresel lojistik ve tedarik zinciri yönetimi konusunda yapay zekanın günden güne kendini geliştirdiği ve lojistik süreçleri kolaylaştırdığı görülmektedir.
In wind energy studies, predicting the short-term energy generation amount for wind power plants and determining the production offer to be placed on the market play an important role. In this study an hourly short-term wind power estimation of a wind turbine located in Turkey with an installed power of 3600 kW has been made. Estimation results were evaluated on a seasonal and annual basis. New hybrid models have been developed for short-term wind power prediction, consisting of Bayesian Optimization (BO), Support Vector Regression (SVR), Gaussian Process Regression (GPR), Decision Tree (DT), stacking, and bagging algorithms. In the proposed prediction approach, it is aimed to reduce prediction errors by combining different regression algorithms with the BO method and ensemble algorithms. Unlike other wind prediction studies, BO was used for the first time in the hyperparameter selection of the regression algorithms selected as the basic learner in the study. Bayesian optimized decision tree (BO-DT) with the lowest error values among the base learners, and Bayesian optimized gaussian process regression (BO-GPR) combined with bagging and stacking. The efficiency of ensemble learning algorithms was measured by the statistical measurement methods Normalized Absolute Mean Error (NMAE), Normalized Root of Mean Squares Error (NRMSE), and determination coefficient (R 2 ). According to the results, the bagging method created with the BO-DT took the annual average NRMSE, NMAE, R 2 criteria of 11.045%, 4.880%, 0.899, respectively, and the model with the best performance was selected in terms of both annual and seasonal results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.