This study analyzes radiation, viscous dissipation and heat source effects on magneto-hydrodynamic free convection flow, of a viscous incompressible fluid over an inclined porous plate. Applying the perturbation technique, the solution of a set of ordinary differential equations are gotten as a result of reducing the non-linear partial differential equations of motion, energy and diffusion, which is solved analytically for velocity, temperature and the concentration distribution. The effect of Radiation, viscous dissipation and heat source on the velocity, temperature, concentration, skin friction, heat transfer and rate of mass flux distribution is plotted graphically using Mathematica 12 software and discussed. It is observed that increased Magnetic field reduces the velocity profile, increases the temperature, skin friction and heat transfer profile. Increase in radiation reduces heat transfer causing a mixed effect on the velocity, temperature and skin friction while an increase in the heat source causes a turbulent effect on the velocity, temperature and skin friction profile. Increase in porosity reduces the velocity, temperature, skin friction and heat transfer profile and finally parameters such as Chemical reaction, Grashof concentration number and Schmidt number had no effect on the velocity, temperature, skin friction and heat transfer profile.
In the present study, Unsteady Oscillatory Couette Flow between vertical parallel plates with constant radiative heat flux is considered. The mathematically formulated governing equations are simplified with dimensionless variables and coupled ordinary differential equations were obtained. Rosseland approximation is used and the present study is therefore for a case of to an optically thick fluid like blood. The transformed set of coupled nonlinear ordinary differential equations is then solved analytically using the perturbation method, and the velocity and temperature functions are simulated. It is observed that increasing the thermal radiation parameter Rd increases the blood flow, in addition, the oscillatory frequency also improves the flow profiles such as temperature y and velocity ( ) w y .
This research work has been carried out to investigate the influence of treatment parameter on flow of blood in a stenosed artery in the presence of magnetic field with heat transfer. The momentum equation governing the flow field has been solved by scaling it to dimensionless structure with the aid of some dimensionless parameters. The equations have been analytically solved using modified Bessel equation and by the method of undetermined coefficients in order to obtain the temperature profile and velocity profile of the blood flow. The characteristics of the flow have been derived for a certain set of values RT ; Da; \theta; Gr; Re; Pr; \omega; \delta involved in the model analysis and are presented graphically with the help of software Mathematica. Moreover the velocity of the blood is adopting a wavy pattern as the values of the parameters vary. The study can be useful in providing a perception of the treatment caused by the superfluous consumption of fatty foods hence decreasing the risk of cancer, hypertension and many heart related diseases.
This article details the use of the power series method to solve a haemodynamics problem in a cylindrical channel with a low Prandtl number. The process involves modifying the Navier-Stokes momentum equation and energy equation with radiation absorption to represent flow through a cylindrical channel; the governing models are made dimensionless with the help of some dimensionless quantities; and the flow is subjected to no-slip boundary conditions. It is true that the flow through biological vessels is thought to be oscillatory due to the pulsatile nature of the heart. The solutions were thought to be associated with an oscillatory frequency term. The dimensionless models were perturbed using the oscillatory term, and the partial differential equations were reduced to ordinary differential equations. Wolfram Mathematica, version 12, was used to code the analytical solutions, which included biophysical parameters such as the Prandtl number, oscillatory frequency parameter, Hartmann number, radiation absorption parameters, and dimensionless wall temperature. It was discovered that changes in biophysical parameters caused changes in both the velocity and temperature profiles, which is extremely important for scientists and clinicians. It is recommended that we pay attention to some of the parameters mentioned above in order to achieve the best results when studying blood flow through a vessel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.