Eosinophilic esophagitis (EoE) is a food allergy-associated inflammatory disease characterized by esophageal eosinophilia. EoE has become increasingly common, but current management strategies are nonspecific. Thus, there is an urgent need to identify specific immunological pathways that could be targeted to treat this disease. EoE is associated with polymorphisms in the gene that encodes thymic stromal lymphopoietin (TSLP), a cytokine that promotes allergic inflammation, but how TSLP might contribute to EoE disease pathogenesis remains unknown. Here, we describe a new mouse model of EoE-like disease that developed independently of IgE but was dependent on TSLP-elicited basophils. Therapeutic TSLP neutralization or basophil depletion also ameliorated established EoE-like disease. Critically, in human subjects with EoE, we observed elevated TSLP levels and exaggerated basophil responses in esophageal biopsies, and a gain-of-function TSLP polymorphism was associated with increased basophil responses. Together, these data suggest that the TSLP-basophil axis could be therapeutically targeted to treat EoE.
The pathogenesis of cystic nephroma of the kidney has interested pathologists for over 50 years. Emerging from its initial designation as a type of unilateral multilocular cyst, cystic nephroma has been considered as either a developmental abnormality or a neoplasm or both. Many have viewed cystic nephroma as the benign end of the pathologic spectrum with cystic partially differentiated nephroblastoma and Wilms tumor, while others have considered it a mixed epithelial and stromal tumor. We hypothesize that cystic nephroma, like the pleuropulmonary blastoma in the lung, represents a spectrum of abnormal renal organogenesis with risk for malignant transformation. Here we studied DICER1 mutations in a cohort of 20 cystic nephromas and 6 cystic partially differentiated nephroblastomas, selected independently of a familial association with pleuropulmonary blastoma and describe four cases of sarcoma arising in cystic nephroma, which have a similarity to the solid areas of type II or III pleuropulmonary blastoma. The genetic analyses presented here confirm that DICER1 mutations are the major genetic event in the development of cystic nephroma. Further, cystic nephroma and pleuropulmonary blastoma have similar DICER1 loss of function and “hotspot” missense mutation rates which involve specific amino acids in the RNase IIIb domain. We propose an alternative pathway with the genetic pathogenesis of cystic nephroma and DICER1-renal sarcoma paralleling that of type I to type II/III malignant progression of pleuropulmonary blastoma.
Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes.
Langerin is a recently identified lectin for which antibodies can be used as immunohistochemical markers of Langerhans cells (LCs). We describe the distribution of staining in autopsy pediatric tissues, dermatopathic and other reactive lymph nodes, and childhood histiocytic lesions using the 12D6 antibody (Novocastra). We also correlate CD1a (antibody O1O) staining to these factors. Langerin on epidermal LCs has a coarsely granular cell membrane and a cytoplasmic staining pattern that is always associated with CD1a expression. All 6 skin samples had Langerin(+)/CD1a(+) LCs within the epidermis. Six of 8 thymuses showed single scattered dendritic-shaped cells in the medulla and rare cells within Hassall corpuscles that coexpressed Langerin and CD1a. Cortical thymocytes were CD1a(+)/Langerin(-). Four of 8 livers examined showed a sinusoidal lining pattern of Langerin+/CD1a(-). All 15 autopsy lymph nodes showed a similarly strong Langerin(+)/CD1a(-) sinus pattern of staining on fixed tissue elements, mostly in medullary sinuses. All 12 dermatopathic lymph nodes showed accumulation of Langerin(+)/CD1a(+) cells in the pale paracortical nodules. All 24 instances of LC histiocytosis (LCH) were Langerin(+)/CD1a(+). All 12 non-LCH histiocytic disorders are negative for Langerin in the histiocytes of interest. We conclude that Langerin is coexpressed with CD1a on LCs and LCH. Lymph node sinuses and hepatic sinusoids show Langerin(+)/CD1a(-) cells, indicating that, when used alone to confirm LCH infiltration, the 12D6 antibody should be used with caution. At other sites, its diagnostic accuracy is similar to that of CD1a.
Hematopoietic stem and progenitor cell (HSPC) expansion is regulated by intrinsic signaling pathways activated by cytokines. The intracellular kinase JAK2 plays an essential role in cytokine signaling, and activating mutations in JAK2 are found in a number of hematologic malignancies. We previously demonstrated that lymphocyte adaptor protein (Lnk, also known as Sh2b3) binds JAK2 and attenuates its activity, thereby limiting HSPC expansion. Here we show that loss of Lnk accelerates and exacerbates oncogenic JAK2-induced myeloproliferative diseases (MPDs) in mice. Specifically, Lnk deficiency enhanced cytokine-independent JAK/STAT signaling and augmented the ability of oncogenic JAK2 to expand myeloid progenitors in vitro and in vivo. An activated form of JAK2, unable to bind Lnk, caused greater myeloid expansion than activated JAK2 alone and accelerated myelofibrosis, indicating that Lnk directly inhibits oncogenic JAK2 in constraining MPD development. In addition, Lnk deficiency cooperated with the BCR/ABL oncogene, the product of which does not directly interact with or depend on JAK2 or Lnk, in chronic myeloid leukemia (CML) development, suggesting that Lnk also acts through endogenous pathways to constrain HSPCs. Consistent with this idea, aged Lnk -/-mice spontaneously developed a CML-like MPD. Taken together, our data establish Lnk as a bona fide suppressor of MPD in mice and raise the possibility that Lnk dysfunction contributes to the development of hematologic malignancies in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.