The current global waste tyre generation far exceeds its consumption in terms of recycling and re-use. The traditional recycling and re-use methods like thermal incineration have proven ineffective, costly and in some cases environmentally unsustainable. Particularly, in developing countries where some of the sophisticated techniques required to process tyres to allow them to be utilised are either too costly or have not yet been developed. The situation has resulted in accumulation of large waste tyre stockpiles that pose health and safety risks. To combat the problem, the use of waste tyre rubber in concrete construction has been proposed. Several studies have been conducted to assess the effects of the inclusion of waste tyre rubber in its different forms (fibres, particles), for concrete production and the results are promising. Although there are some apparent demerits to the inclusion of tyre rubber in concrete, the potential benefits seem to overshadow the negatives. This paper reviews published research on the scientific and technical viability of using waste tyre rubber in concrete production. It discusses the production and properties of waste tyre particles. It highlights advances made with regards to the incorporation of tyre rubber material in concrete, focusing on the engineering properties of the tyre rubber modified concrete. In conclusion, recommendations for future research and possible application for the material will be discussed.
This paper presents results of a study into the effects of truck tyre crumb rubber particle size, as fine aggregate, on the compressive strength, shrinkage and creep behaviour of structural rubberised concrete. The study is motivated by a growing interest in the use of concrete with waste tyre rubber particles, rubberised concrete, for structural applications. Three tyre crumb rubber sizes (2.36, 1.18 and 0.425 mm) were used to replace 10% by volume of fine mineral aggregates to produce concrete with a target strength of 30 MPa. The concrete was cast water-cured for 28 days and tested for shrinkage and creep for 180 days. Half of the shrinkage and creep samples were sealed with a bitumen seal to prevent drying during testing. Results show a general a decrease in compressive strength with reduction in crumb rubber size. The strength decreases by 22%, 23% and 27% for the 2.36, 1.18 and 0.425 mm mix respectively. Preliminary results show a general increase in both shrinkage and creep deformations in both drying and sealed conditions. The observed increases were checked against the limits provided in design codes to assess the applicability of the material for structural purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.