In this paper, we propose a Difference Image Entropy based gaze direction recognition system. The Difference Image Entropy is computed by histogram levels using the acquired difference image of current image and reference images or average images that have peak positions from -255 ∼ +255 to prevent information omission. There are two methods about the Difference Image Entropy based gaze direction. 1) The first method is to compute the Difference Image Entropy between an input image and average images of 45 images in each location of gaze, and to recognize the directions of user's gaze. 2) The second method is to compute the Difference Image Entropy between an input image and each 45 reference images, and to recognize the directions of user's gaze. The reference image is created by average image of 45 images in each location of gaze after receiving images of 4 directions. In order to evaluate the performance of the proposed system, we conduct comparison experiment with PCA based gaze direction system. The directions of recognition left-top, right-top, left-bottom, right-bottom, and we make an experiment on that, as changing the part of recognition about 45 reference images or average image. The experimental result shows that the recognition rate of Difference Image Entropy is 97.00% and PCA is 95.50%, so the recognition rate of Difference Image Entropy based system is 1.50% higher than PCA based system.
The researches about gaze recognition which current user gazes and finds the location have increasingly developed to have many application. The gaze recognition of existence all about researches have got problems because of using equipment that Infrared(IR) LED, IR camera and head-mounted of high price. This study propose and implement the gaze recognition system based on SVM using a single PC Web camera. The proposed system that divide the gaze location of 36 per 9 and 4 to recognize gaze location of 4 direction and 9 direction recognize user's gaze. Also, the proposed system had apply on image filtering method using difference image entropy to improve performance of gaze recognition. The propose system was implements experiments on the comparison of proposed difference image entropy gaze recognition system, gaze recognition system using eye corner and eye's center and gaze recognition system based on PCA to evaluate performance of proposed system. The experimental results, recognition rate of 4 direction was 94.42% and 9 direction was 81.33% for the gaze recognition system based on proposed SVM. 4 direction was 95.37% and 9 direction was 82.25%, when image filtering method using difference image entropy implemented. The experimental results proved the high performance better than existed gaze recognition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.